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This final report consists of a compilation of four separate written documents, three dealing with

the response and failure of elliptical composite cylinders to an internal pressure load, and the

fourth dealing with the influence of manufacturing imperfections in curved composite panels. The

three focused on elliptical cylinders consist of the following:

1 - A paper entitled "Progressive Failure Analysis of Internally Pressurized Elliptical Composite

Cylinders," which is included in the Proceedings of the 15th Annual Technical Meeting of the

American Society for Composites held in September 2000.

2 - A paper entitled "Influence of Geometric Nonlinearities on the Response and Failure of

Internally Pressurized Elliptical Composite Cylinders," AIAA paper no. 2000-1516, which is

included in the Proceedings of the 41st Structures, Structural Dynamics, and Materials

Conference held in April 2000.

3 - A report entitled "Response and Failure of Internally Pressurized Elliptical Composite Cylin-

ders," dated September 1999.

The document which deals with the influence of manufacturing imperfections is a paper entitled

"Manufacturing Distortions of Curved Composite Panels" which is included in the Proceedings of

the 14th Annual Technical Meeting of the American Society for Composites held in September

1999.
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ABSTRACT

Presented is a brief overview of a study which focuses on the use of a pro-

gressive failure analysis to predict the failure pressure, mode, and location of inter-

nally pressurized composite cylinders with elliptical cross sections. The analysis is

based on a STAGS finite-element analysis, the maximum stress failure criterion, and

a material degradation scheme and the associated redistribution of stresses. A small-

scale clamped quasi-isotropic cylinder with a ratio of minor to major diameters of

0.7 is used as an example. A classic first ply failure analysis is also considered for

comparison.

INTRODUCTION

Cylinders are often used as the idealized model for a number of important

structures. Aircraft fuselages, missile cases, submarine hulls, and tankage for storing

and transporting various liquids and gases are but a few example structures. Of inter-

est are deflections, buckling loads, vibration frequencies, stress levels, and interac-

tions with endfittings or supports. Cylinders with circular cross sections are

generally used as the basis for many of the models, and much has been written

regarding the analysis of circular cylinders. However, next generation civil trans-

ports may well utilize fuselage designs that depart from the normal circular cross

section, and future reusable launch vehicles may use fuel tanks that are noncircular.

Aerodynamic, structural, or payload considerations may dictate the noncircular

designs. These aerospace structures can also be idealized as cylinders, but with non-

circular cross sections. Since fiber-reinforced composite materials are often the

material of choice for aerospace applications, due to weight and design flexibility, it

is logical to consider composite materials for these two applications. Furthermore,

for both fuselages and fuel tanks for reusable launch vehicles, internal pressure is an

important loading. For a fuselage, an elevated internal pressure is necessary for the

passenger. For fuel tanks, liquification of a gaseous component of the fuel at cryo-
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genic temperatures leads to internal pressure. In both cases, failure in the sense of

catastrophic material failure is imponant_ but also, failure in the sense of leakage of

the cylinder wall can be important. This paper examines the failure of internally

pressurized noncircular cylinders by considering cylinders of elliptical cross section.

Failure is addressed both by a first ply failure analysis and by a progressive failure

analysis. With the latter, rather than stop the analysis when the pressure reaches the

level to cause failure, as predicted by some failure criterion, material properties are

degraded as failure occurs, the pressure is increased, and the analysis continues. A

finite-element analysis is used. Elliptical cross sections are considered because ana-

lytical expressions can be written to represent the geometry of the cross section.

However, it is felt that many of the conclusions reached for the case of elliptical

cross sections also hold for more general noncircular cross sections.

The sections that follow define the specific problem being addressed. The

geometry, boundary conditions, and general nomenclature are introduced. The finite-

element model used to compute the stresses, and hence the failure characteristics, is

discussed. The failure criterion is described, particularly the scheme for introducing

material degradation. Remits for a quasi-isotropic cylinder are presented and dis-
cussed.

PROBLEM DEFINITION

The particular problem being discussed is described in fig. 1. The cylinder

has a reference surface of length L, the major and minor diameters are 2a and 2b,

respectively, and the cylinder wall is of thickness H. The circumference of the cylin-

der is denoted as C, and here the ellipticity e is defined as the ratio of the minor to

major diameters. The crown and keel denote the upper and lower flatter parts of the

cylinder, and the sides the more curved portions. Spatial positions axially are

(Wall is L

Thickness) (Length)

w° i crown

2a = major diameter

2b = minor diameter

• = b/I • elUptJcity

C • circumference

FIGURE 1. Problem description, nomenclature, and geometry of an elliptical cylinder.



denoted by x, with x = 0 at the cylinder midspan, i.e., -L/2 <_x < +L/2. The circumfer-

ential coordinate is s, where s = 0 at the top of the cylinder and -C/2 < s < +C/2.

While they will not be discussed specifically, the axial, circumferential, and normal

components of displacement of the reference surface are given by u°, v °, and w °,

respectively. The internal pressure is denoted Po. Compared to a circular cylinder,

the behavior of the elliptical cylinder displacements due to internal pressure is sig-

nificantly different and is characterized by the cylinder tending to become more cir-

cular as the internal pressure increases. This leads to the existence of circumferential

displacements and inward normal displacements at the ends of the major diameter

[1-3]. Both ends of the cylinder are assumed to be attached to rigid end caps.

Accordingly, the ends are considered fully clamped, except for the fact that the end

at x = +L/2 can move axially to accommodate the axial motion A which is due to the

axial strain caused by a combination of internal pressure and Poisson's ratio effects.

Specifically, the boundary conditions are given by

L uO +L
i) u°=O@x=-._, =A@x= 2

OW °

ii) v ° = 0 iii) w ° = 0 iv) _x = O.

(1)

The finite-element mesh representing the cylinder is shown in fig. 2. The

STAGS finite-element code [4] is used to solve for cylinder response, and it should

be noted that the mesh density in the axial direction increases toward the' ends of the

cylinder. This is due to the high gradients in the displacements near the ends. There
are 70 elements in the axial direction and 50 in the circumferential direction. The

410 element from the STAGS element library is used. Geometric nonlinearities are

included.

FIGURE 2. STAGS finite element mesh for an elUp6calcylinder.



FAILURE CRITERION

For both the first ply, or nonprogressive, failure analysis and the progressive

failure analysis, the maximum stress criterion is used to indicate material failure.

Previous work [1-3] has shown that interlaminar stresses have minimal contribution

to failure and thus are ignored here. The material is assume to have not failed if the

following inequalifles are all satisfied:

Fiber Modes

°'1--21< 1 -°'1-------Z1< 1
+

Matrix Modes

°'2--_2< 1 -°"22
+

0.,
m<l

Shear Mode

(2)

These equations are written in the principal material coordinate system and the quan-

rifles o',,1+ and 0",,1"are the tensile and compressive failure stresses in the fiber direc-

tion. In like fashion, 0"/,+ and 0.T" are tensile and compressive failure stresses

perpendicular to the fibers, in the plane of a layer, and z"A is the shear failure stress in

the plane of a layer. When any of the five stress ratios equals unity, failure of the
material is assumed to have occurred, the failure mode being determined by the par-

ticular equation. For the work here, the values of the failure stresses are given by

+ +

0.a = 200, 000 psi o-T = 7250 psi ra = 14, 500 psi
(3)

0.] = 180, 000 psi 0._ = 29,000 psi

For the nonprogressive failure analysis, the pressure required to cause one of

the five equations to be unity is computed. This is done by computing the strains and

curvatures at the centroids of all elements and then computing the stresses as a func-

tion of cylinder wall thickness location. The result of these calculations is the failure

pressure, the element, the location within the wall, and the mode of first failure. For

the progressive failure analysis, the same calculations are performed to find the first

failure. However, the material properties in the particular layer or layers that fail are

then reduced within the finite-element according to the following scheme: If matrix

of shear failure occurs then E 2 and G12 are degraded by 80%. If fiber failure occurs

then Eb F_q and G12 are degraded by 80%. These reductions reflect the loss of stiff-

ness due to matrix and fiber failures. Following the reductions in properties, the

stresses within the cylinder are recomputed using the pressure that caused first fail-

ure. Generally other failures result from the localized redistribution of stresses that

accompany the local reductions in stiffness. Stiffness are further reduced and the

stresses are recomputed at the same pressure. After several iterations, no further fail-
ures occur due the redistribution of stresses and the pressure is increased until the

next failure is encountered. The material properties are reduced in the appropriate

elements and layers and the stresses recomputed with the pressure fixed. Again, after

several iterations, no further failures occur at that pressure and the pressure is

increased again. This process is continued to any desired pressure level.



NUMERICAL EXAMPLE

As a forerunner to testing full-scale cylinders in the laboratory, small-scale

cylinders are being studied. As a result, numerical results here will focus on cylin-

ders with dimensions L = 12.5 in, 2a = 10 in., 2b = 7 in. made of graphite-epoxy

using an eight-layer quasi-isotropic [+45/0/90] s layup. As a result, the ellipticity e is

0.70. The material properties are assumed to be

E 1 = 18.85 Msi E 2 = 1.407 Msi

G12 = 0.725 Msi v12 = 0.300 h = 0.0055 in.
(4)

and the layer thickness is 0.0055 in.

As might be expected, the first failure to occur is matrix failure, specifically

due to a tensile 02, and it occurs at a pressurep/of 140 psi. The first failure occurs at

the ends of the cylinder in the inner layer, a +45 deg. layer. Because of the noneircu-

lar geometry, the stresses vary with circumferential position and as a result, there are

specific circumferential locations where the matrix fails first. The lefthand portion of

fig. 3 illustrates the location of this failure. In the figure one quadrant of the cylinder

is rendered in somewhat of a three-dimensional fashion. The quadrant extending

from 0 < x < +L/2 and -C/4 < s < +C/4 is shown, but with the through-thickness loca-

tion, _, normalized by the wall thickness H and greatly exaggerated in proportion to

x and s, also included in the rendering. There is a dot indicating the location of the

first matrix failure, namely the inner layer at s/C = -0.124. There is not another dot at

s/C = +0.124 because despite geometric symmetry about s = 0, the material proper-

lies are not symmetric about s = 0 - i.e, DId and D26 are nonzero - so the cylinder

failures there at a slightly higher pressure. There is a companion failure at s/C =

+0.376 (not shown), and there are failures at similar locations at the other end of the

cylinder (not shown). Since first matrix failure is generally not catastrophic, the

pressure to produce the first fiber failure, with no degradation in material properties,

is also computed. The first fiber failure is a compressive failure which occurs at the

First Matrix Failure: 140 psi First Fiber Failure: 260 psi

0.51_ _ j _ 0._1_ _ /

-,.,_fll,i_-_ -*.,i_f li
-o.2,,_o_ .i I_/ -_ _7 _o.5 .o._ ,1

0.,5 _1 °l "_" -o.m "_. F_ . 0.2

FIGURE 3. Nonprogressive failure of a quasi-isotropic elliptical cylinder.



end of the cylinder in layer no. 8, the outer +45 deg. layer, at a pressure of 260 psi.

The location is shown in the righthand portion of fig. 3. These numbers, which are

summarized in table 1, agree well with the first matrix and fiber failures computed

using a semi-closed form solution [1-3]. The differences that occur are due to the

fact that the centroid of the failed element is not at the exact end of the cylinder,

whereas with the semi-closed form solution, the failure was predicted to occur

exactly at x = L/2.

The results of a progressive failure analysis for first matrix and first fiber

failures are shown in fig. 4. The first matrix failure, namely, the lefthand side of the

figure, is identical to the nonprogressive first matrix failure, namely the lefthand side

of fig. 3, because matrix failure is the first to occur in both cases. The righthand side

of fig. 4 indicates with dots the locations of all the failures that occur up to and

including first fiber failure. The first fiber failure dot is circled in the figure and

occurs in the outer layer, again due to compression at s/C= -0.124. For the progres-

sive analysis, the pressure to cause first fiber failure is 250 psi, slightly less than the

260 psi of the nonprogressive case. While this is not a large decrease, these results

are for one laminate and one cylinder geometry. Furthermore, the results may be sen-

sitive to the material property degradation scheme and the failure criterion used.

What is shown in fig. 4 is but a specific example. It is important to point out in fig. 4

that matrix failure begin to occur away from the end of the cylinder. Also, for this

example, fiber failure occurs at about twice the pressure of first matrix failure.

Before closing, it is instructive to consider two other issues. Figure 5 pro-

vides an indication of why at a given pressure it is important to iterate to determine

all the failures when using the material degradation scheme described. The lefthand

portion of the figure shows the matrix failures predicted by the first initial iteration

of material degradation at 200 psi. The righthand portion shows the matrix failures at

the final iteration at 200 psi. Though the details are difficult to discern, the circled

regions show where iteration results in additional matrix failures. The need for itera-

tion is an artifact of the numerical scheme employed, but physically the need to iter-

ate is due to the redistribution of stresses that accompanies failure. Finally, fig. 6

compares matrix failures for the nonprogressive and progressive failure analyses.

//

First

0.500 "_ /

/ /
0.375 _ /

/
0.250 ' / 7
0.12_ / /
o.ooo / /

-0.125 / _/

1115"-.-
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.,-,.,._..

...,,4"-----_......

ii)
-025
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--.-._..
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_0. 0"4
3

0.0

FIGURE 4. Progressive failure of a quasi-isotropic elliptical cylinder.
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FIGURE 5. Effects of progressive failure for a quasi-isotropic elUp'dcal cylinder at 200 psi.

The leflhand side is somewhat fictitious and shows the matrix failures and one fiber

failure (circled) that are predicted to occur at 260 psi using the nonprogressive anal-

ysis. The righthand side shows the matrix failures and one fiber failure that occur at
250 psi using the progressive failure analysis. The left, and side is fictitious because
the effects of all the matrix failures on material properties are ignored when comput-

ing first fiber failure. The decreased number of matrix failures for the 250 psi pro-
gressive case relative to the 260 psi nonprogressive case show the combined effects
of a 10 psi pressure increase and stress redistribution caused by material degrada-
tion.

Presented has been a discussion of failure of elliptical composite cylinders

due to internal pressure. The key points of the discussion are: 1 - Failure occurs at a
specific circumferential location due to the varying geometry; 2 - Fiber failure
occurs at about twice the pressure of first matrix failure; and 3 - The Progressive fail-

ure analysis leads to a slightly lower fiber failure pressure.

tt

t

0.5O0 t"
/

0.375
,,4

0.250 1
/

0.125"
/

0,000
/

-0.125
/

-.0.2_0 '
V

.0.375

.o._ k:

Progressive: 250 psi

FIGURE 6. Comparison between Nonprogressive failure predictions for a quasi-isotropic
elliptical cylinder,



TABLE I. COMPARISON OF MATRIX AND FIRST FIBER FAILURE FOR
NONPROORESSIVE AND PROGRESSIVE FAILURE ANALYSES.

Matrix

140

Fiber (Nonprogressive)

260pf (psi)

loc 1 (+45) 8 (+45) 8 (+45)

s/C -0.124 -0.124 -0.124

mode +or2 "_'1 -o"1

Fiber (Progressive)

250

ACKNOWLEDGEMENTS

The work reported on was supported by grant NAG-l-1895 from the

Mechanics and Durability Branch of the NASA Langley Research Center to Virginia

Tech. The authors greatly appreciate the grant support.

REFERENCES

1. McMurray, J.M. and Hyer, M.W., "Internally Pressurized Elliptical Composite

Cylinders." Composite Structures 46 (1999): 17-31.

2. McMurray, J.M. and M.W. Hyer, "Response and Failure of Internally Pressurized

Elliptical Composite Cylinders," Proceedings of the American Society for Com-

posites 14th Technical Conference, p. 95-105, available Technomic Publishing

Co., Inc., 1999.

3. McMurray, J.M. and M.W. Hyer, "Influence of Geometric Nonlinearities on the

Response and Failure of Internally Pressurized Elliptical Composite cylinders,"

AIAA paper no. 2000-1516, presented at 41st AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference, Atlanta GA, 2000

4. gankin, C.C., F.A. Brogan, W.A. Loden, and H.D. Cabiness, "STAGS Users

Manual, Version 3.0," Lockheed-Martin Missiles & Space Co., Inc., Report

LMSC P032594, March 1999



AIAA-2000-1516
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Abrupt

Discussedare the characteristicsof the

responseof internallypressurizedellipticalcomposite

cylinders,includingfailure.The influenceoftheellipti-

calgeometryisillustratedbycomparisonwithacircular

cylinder.The influenceof orthotropyisillustratedby

considering axially-stir, circumferentially-sti_, and
quasi-isotropic laminates. The influence of geometric
nonlinearities is studied by inclusion of the von Karman
terms in the s(zain-displaccment relations. Two failure
criteriaareconsidered,theHashincriterionand the

maximum stresscriterion.Theseareusedtocompute

thepressurestocausematrixcrackingandfiberfailure.

Problem Description

The problem considered consists of the cylin-
der described in fig. 1, with a, b, andL denoting, resp_-
tively, the semi-major diameter, store-minor diameter,
and axial length of the cylinder reference surface. The

degree of ellipticity, e, is defined here as the ratio, b/a.
The wall thickness of the cylinder is denoted by H and
the internal pressure by Po. The displacement of the ref-

erence surface in the axial, x, direction is denoted by
u°(x,s), that in the circumferential, s, direction by
v°(x,s), an that in the direction normal to the reference
surface by w°(x,a). The upper part of the cross-section is
referred to as the crown, the lower part the keel, and the
sides are ref_md to as the sides. It will be assumed the

cylinder ends arc clamped to a rigid end plate or bulk-
head which can move axially. Accordingly, clamped
boundary conditions are applied to each end of the cyl-
inder, with the exception of allowing the end at x = +I/2
to expand uniformly in the axial direction with displace-
ment A. The end at x = -//2 cannot move axially in
order to restrict axial rigid body translatiom Formally,
the boundary conditions at the ends of the cylinder

(x = _'2)are

* GraduateResearch Associate

1" Professor, Associate Fellow, AIAA; Fellow, ASME;
President, ASC

Cepyright @ 2000 by J.M. McMurray m_l M.W. Hyer. Puldkflaad by tim
Am_.icaa hlstitu_ of Aerom_lcs and Aib_ansu/_cs, Tmc.,with lU_'nlssi_m.

;)u°=0@_,=-_ u°=A@x=+_
2' 2

(I)
• 0w °

ii) v° = 0 iii) w° ffi0 iv) _._ = O.

The end displacement zt is determined by enforcing
axial equilibrium of the end enclosure at x = +//2,

namely,

_ooNxda = Poxab, (2)

where Nx is the axial force resultant within the cylinder

(to be defined shortly), C is the circumference of the
cylinder reference surface, and the cross-sectional area
of the ellipse is nnb. Physically, eq. 2 states that the net
axial force due to the intt,_al pressure times the cross-
sectional area of the end enclosure must be balanced by
the net axial force due to the axial force resultant.

_s_i_x.Amaa_

The solutionprocedurebeginswiththeexpres-

sionfor the totalpotentialenergyof the cylinder,

namely,

1_r L 0+ o+ NxzTx+MxKxo oX-XIINr_ x N:6.
L_0J0 - (3)

+ o+ oM,_., Mx, l%,ldrda.

The force and moment resultants in eq. 3 am defined by

J4r//2

__J'-'-,2%_=- o+_ oN. -- AII£ x Ai2gi

= tH/ /2 Al2g x A22g #__J-_'/2°'*ar"' = o + oN,

.,Vx,= = Ass'ix`
(4)

.-..C2.2%'a_ o o oM x - = DIlKx +DI2K s +DI6Kx:

jJf_2 o o + oM: = /2_:_d_ = DI2Kx+ D22_: D26Kx:

___2 o+ o + _ oMrs - /2"fxz_d_ - DI6Kx D26Ka l';66Kxa"

where _"is the through-thickness coordinate within the
cylinderwall. As seenfrom the form of eq.4,onlysym-
metricand balancedlaminatesarebeingconsidered.

The reference surface strains and curvatures in the

energyexpressionarerelatedtothereferencesurface

displacementsby
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o _o+ i_2

o. : ll _
% b"; + R(s='='_)+ 2_--;/

Yx, 0=_ ax _x ) kOs /

o o½ °
KX = _

Ox2

o o_ ° (5)
K# _-'_S 2

2 0
0 OW

Note that the radius of curvature being a function of a in

_0, is what makes this problem different than that of a

circular cylinder. The underlined terms in eq. 5 denote

the geometric nonlinearities. These are the yon Karman

approximations to the fully nonlinear slrain-displace-
ment relations.

With the radius of curvature varying circumfer-

entially, a closed-form solution to the problem is not

easily found. Accordingly, an approximate solution is

sought. To begin the approximate solution, the circum-
ferential variation of the inverse radius of curvature is

expanded, in a method suggested by Marguerre [1], in a
cosineseries, such that

1

I _ os4iXa
R_',) -=2. °4: -'_', (6)

i=O

where thecoefficientsa4iarcconstantswhich depend on

the specific cross-sectionalgeometry (semi-diametersa

and b) and ! is the number of terms needed to properly

represent the variationof the inverse radius of curvature.

The dependence of the reference surfacedisplacements

on the circumferentialcoordinate isapproximatedusing

theKantorovichmethod by a harmonic seriesm a form

respired by the inverseradiusofcurvature,namely,

N
o o.. 4nxs

u°(x,.)= Uo(X)+ _ u.tx_¢°'--d-
n=l

M

+ E UN+° m(x)Sin_._

m=!

M
o o. . 4mx3

v°(x, _) - Vo(X) + _ v,,,tx)cos-_-

" = l (7)
N

o . .. 4nxa

+ Z VM+ntX)mn--_

N
o o.. 4nxa

w°(x,,) = Wo(X) + _, w.tx)COS--'C"--
n=!

M
o , .. 4mxs

+ Z wN+mtx)sm-'-_"
m=l

where M and N determine the number of terms in the

various series. For an isotropic cylinder, sine terms

would not be necessary for u°(x,s) and w°(x,J), while

cosine terms would not be necessary for v°(x,s). The

presence of the bending stiffness terms DI6 and D26

makes inclusion of these terms necessary.

With eq. 6 and eq. 7, the displacements and the
radius of curvature have been explicitly expressed in

terms of the circumferential coordinate, s. Substituting

the displacements of eq. 7 into the strains and curvatures

of eq. 5, and these, in turn, into the stress and moment

resultants of eq. 4, integration of the energy expression

with respect to s can be performed. The integrand of the

energy expression is then dependent on the coefficients

in eq. 7, which are only a function of x. As a result, the

energy expression can be written symbolically as

+z_
x = f2 Ffc U(x,,)_,l_,

J_ tJo J
2 (8)

+_z

- f_F(y,(x),y',(x),y',(x))obr, (i - 1, 3(N+M+ 1))
2

In eq. 8 the Yi (x) represent the functional coefficients m

eq. 7 and ( )' represents differentiation with respect to
the axialcoordinate x. Although the integrand above is

also a function of cylinder geometry, material proper-

ties, and the pressure, they are constants that are not

involved in the variational process. Equating the fast

variation of the total potential energy to zero results in

the Euler-Lagrange equations for the yl(x) and the asso-

ciated variationally consistent boundary conditions at x

= M_./l The boundary conditions of eq. 1 translate into

specifying values ofySx) and y/(x). Defining intermedi-

ate variables in order to reduce the system from a third-

order to a first-order form, it is possible to obtain a set of

coupled nonlinear fwst-order ordinary differential equa-
tions which are integrated by the finite-difference

method using the IMSL subroutine DBVPFD, a vari-

able-order, variable-step-size algorithm employing

Newton's method. By rendering the governing Euler-

Lagrange equations to fu-st-order form, various deriva-
tives of u*, v*, and w* are directly available for comput-

ing referencesurfacestrainsand curvaturesand force

and moment resultants.More importantly,stressesas a

functionofx_s,and _ can be computed.

Character of the Response

Though ultimate interest with elliptical cylin-

ders is for application to aircraft fuselage structures, ini-

tial experimental work will take place with small scale

cylinders. The displacement, strain, and s_'ess response
of these smaller cylinders must be understood before

studiesoflarge-scalecylinderscan commence. To that

end,inthepresentstudynumericalresultswillbe shown
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for eight and nine layer graphite-epoxy cylinders with

semi-major diameters of 127.0 mm, ellipticities of 0.7,

and lengthsof 0.318 m. The materialand geometric

properties of a layer of graphite-epoxy are taken to be

E t = 130.0 GPa E 2 = 9.70 GPa
(9)

G]2 = 5.00 GPa o12 = 0.300 h = 0.1400 mm

where h is the thickness of a single layer. The laminates

considered are: quasi-isotropic, [:L45/0/90]s; axially-

stiff, [+45/02/90_]s; circumferentiaUy-stiff,

[±45/902/0_s, where 0 deg. is the axial direction. These

lay-ups were selected because each has at least one layer
with itsfibersinthe axialdirection,atleastone layer

with itsfibersinthecircumferentialdirection,and 4-45

degreelayers.Eightorninelayersisa reasonablenum-

ber from the pointofview ofmanufacturingthecylin-

dersby hand on ellipticalmandrels.

In ordertodemonstratetheinfluenceofellipti-

calgeometry,the basicresponsesofan ellipticalcylin-

der subjectedto internalpressureare compared with

those of a circularcylinder.For thiscomparison the

quasi-isotropiclaminateischosen and a geometrically

linearanalysisisused tocompare referencesurfacedis-

placements. Figure 2 illustrates axial, circumferential,
and normal displacements as a function of the axial and
circunfferential coordinates. The displacements have

been normalized by the laminate thickness H. An inter-

hal pressure of po=0.690 MPa is used to compute the

results in these figures. The format of the fig. 2 illus-

trates the response of one-eighth of the cylinder. The
coordinate locations have been normalized and, refer-

ring to fig. 1, the range of 0 < x/L < 0.5 and 0 < s/C <

0.25 is considered. Due to the presence of D_6 and D26,

the problem does not exhibit octal symmetry. However
looking at only one eighth of the cylinder provides a

fairly accurate detailing of the response, and simplifies

displaying the results. Implementing symmetry and anti-
symmetry arguments for various responses, the response

for the remainder of the cylinder can be envisioned.

Regarding the axial displacement, for an inter-

nally pressurizedcircularcylinderthe axialdisplace-

ment would be thenet resuRofthepressureforcingthe

end enclosures apart and the Poisson effect due to cir-

cumferential expansion pullingthem together.This

results in a nearly linear axial displacement with the

axial coordinate and, since the problem is axisymmetric,

the axial displacement would not vary with s. Recall

from the boundary conditions of eq. 1 that the axial dis-

placement is zero at x/L = -0.5. At x/L = 0.5 the axial

displacement is determined by eq. 2. Because of the
nearly linear variation with x, the axial displacement at

x/L = 0.5 would be approximately twice the value at x/L

= 0. As seen in fig. 2, for the elliptical cylinder, the axial

displacement response is not axisymmetric and is far

from being linear with x. Along the crown of the cylin-

der, s/C=0, the axial displacement is positive, while

along the side of the elliptical cylinder the axial dis-

placement is actually negative at certain axial locations.

Since the axial displacement changes signs with spatial
location, there are some locations besides x=-L/2 where

the axial displacement is zero. It should be noted, how-

ever, that the axial displacement at x,/L=0 is practicaUy

independent of s, as it is at r,/L=0.5, and the axial dis-

placements at these locations differ by a factor of 2, as
theywould forthecircularcase.

For balanced symmetric laminates,an inter-

nallypressurizedcircularcylinderhas no circumferen-

tialdisplacementresponse.However, asshown infig.2,

the elliptical case shows circumferential movement
away from the sidesand toward the crown and keelof

the cylinder, a response that clearly distinguishes an

elliptical cylinder from a circular one and one that has

consequences at the ends of the cylinder where displace-
ments are constrainedto be zero. Figure 2 illustrates

anotherdistinguishingdifferencebetween a circularand

elliptical cylinder.With internalpressure the normal

displacementof a circularcylinderis uniformly out-

ward. In contrast, under internal pressure the elliptical

cylinder moves outward at the crown and keel, but
moves inward at the sides. The cylinder tends to become

more circular. This also has important consequences at

the ends of the cylinder.
To demonstrate the influence of orthotropy, or

lamination sequence, circumferential strain is consid-

ered. As seen in fig. 3, particularly the upper left subfig-

ur¢, the degree to which the circumferential strain varies
with the s coordinate at the midspan is determined to a

large degree by the laminate considered.Recall,the cir-
cumferential strain for a circular cylinder has no varia-
tion with the s coordinate, independent of lamination

sequence. As seen in fig. 3, at midspan the circumferen-
tially-stiff laminate mitigates, to a certaindegree,the

effect of ellipticity, as the strain does not vary much
with s there. The circumferential strata for the axially-

stiff and quasi-isotropic laminates varies more. There-

fore,itappearsthat unlike a circular cylinder,the per-

centage of fibers in the circumferential direction in an

elliptical cylinder controls the degree of variation with s
of the circumferential strain at midspan.

To demonstrate the influence of geometric

nonlinearities, circumferential curvature for the quasi-

isotropic case is considered. The differences between
linear and nonlinearanalyses are easily visible in fig. 4.

In the midspan region for the nonlinear analysis case

thea_ is a significant flattening along the crown of the

cylinder.
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L tumAlu m

Inthissectionan evaluationoffailureusingthe

Hashin and maximum stressfailurecriteriaispresented

by consideringgeomctricaUylinearand nonlinearanaly-

ms and axially-stiff,quasi-isotropic,and circumferen-

tially-stiffcylinders.The failurecriteriaare used to

assessthe mode of failure(e.g.,tensileor compressive

fiberor matrixmodes), thelocationoffailure,and the

pressure at failure.
The Hashin and maximum stress failure criteria

are based on one-dimensional uniaxial and shear failure

stresses which are denoted as follows:

4-

%_ = tensile failure stress in the fiber direction

o_ = compressive failure stressinthe fiber direction

(absolutevalue)

4-

or = tensilefailurestresstransversetothefiberdirec-

tion

or = compressivefailurestresstransversetothefiber

direction(absolutevalue)

_r = transverse failure shearstress

-c_= axialfailure shearstress

For graphite-epoxy typical values of the failure stresses

are:

4- 4-

cr/l = 1.379 GPa ¢rr = 50.0 MPa

o74 = 1.241_Va _ = 200Mea (10)

rA = 100.0MPa eT= I00.0MPa

The failuremodes of the Hashin criterioncan

be denotedasfollows:

Tensile Fiber Mode: 0.Js > 0

'Hlz+I :z z
-_) -_(o_z+ crzj)< I (II)rA

Compressive FiberMode: 0.Jl< 0

-°'I------2< 1 (12)

d

TensileMatrixMode : 0"22>0

Compressive Matrix Mode: 0"22< 0

,2 + < 1(14)

Hence, the cylinder is assumed to be safe from failure if
all four left hand sides of eqs. 11-14 are less than unity,

and failure is assumed to have occurred ff any one of the

four leR hand sides equals unit 7. In the above the sub-

scripts 1, 2, and 3 on the stresses denote principle mate-

rial system stresses, conventional notation. The failure

modes of the maximum stress theory can be denoted as
follows:

TensileModes (0"m 0"22> 0):

°'I----2< I _zu < 1 (15)
4- 4-

a,l or

compressive Modes (o'11, 0"22< 0):

-°'t----2< 1 -a22 < 1 (16)

Shear Modes:

k_-_<l 10131< 1 I°/_ < 1 (17)

rr r_ rA

With thisform of the failurecriterion,the cylinderis

assumed tobe safefrom failureifallseven of the left

hand sidesofeqs.15-17arelessthan unity,and failure

isassumed to occur ifany one of the seven lefthand

sidesequalsunity.
Inordertomake use of eitherfailurecriterion,

computation of the inplane and interlaminarshear

stresses in the principalmaterial coordinate system are

necessary. The computation of the inplane stresses fol-

lows the standard approach of the classical lamination

theory [2]. Computation of the interlaminar stresses is

more complicated. For the geometrically linear case, the

equilibrium equations of elasticity were integrated
through the thicknessof the cylinderwall to obtain

expressionsforthe interlaminarstresses.These stresses

were used inthefailureanalysisand were found tohave

minimal influenceon the failure predictionsand could

have been ignoredwithoutintroducingsignificanterror.

The equilibrium equations of elasticity for the geometri-

cally nonlinearcasearequitecomplex compared to the
linear case. Therefore, as an approximation, the inter-

laminarstressesfor the geometrically nonlinearfailure

analysis were computed from the geometricallylinear

equations. In light of the minimal impact of the inter-
laminarstresseson the failureanalysis,thisapproxima-

tionwas felt to be justified.

To compute the predicted failurepressure

using the geometrically linear theory,the analyseswere
conductedusingan internal pressure Po of 0.690MPa.

The leRhand sidesof the two failure criteria were then

4
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evaluatedas a functionof axial,circumferential,and

through-thicknesslocationwithinthecylinderwail.For

each criteriathelefthand sidethatwas closesttounity

identifiedthe failurelocationand failuremode. The

pressuretocausefailurewas thendeterminedby scaling

the0.690 MPa.

Two issueswere immediatelyobviousfrom the

linearfailureanalysis.First,as mentioned above,the
interlammarstressesdid not contributeto failure.The

interlaminarstresscomponents were much smaller than

the inplanecomponents,and althoughthe mterlaminar

failurestresseswere small,the components contributed

littletothepolynomialsoftheHashin criterionand did

notplaya roleinthemaximum stresscriterion.Second,

both theHashin and maximum stresscriteriapredicted

failuretobe due to inplanematrixfailure,i.e.,matrix

cracking,due primarilytotensilestressperpendicularto

the fibers.Since matrixcrackingisnot generailycata-

strophic,itwas feltimportantto look atotherfailure

conditions.Therefore,thepressuretocausefiberfailure

was also computed. Ignored was any degradationin

propertiesdue tomatrixfailureoccurringbeforefiber
failure.

The upper quarterof tableI summarizes the

findingsof the linearanalysesforthe threelaminates

and the Hashin failurecriterion.The tableshows the

failure pressure, pf, failure location, failure mode, and

the ratio of the bending component of the stress at the

failure location, c% to the inplane component of stress

there, o'_.Both the matrix and fiber failuresare consid-

ered.All failuresoccurredat two circumferentialloca-

tionsand both ends of the cylinder,though only one

locationislistedinthe table.As can be seen from the

upper left portion of the table, for the axially-stiff cylin-
der, matrix failure occurred at 0.896 MPa at the inner

interface of the inner layer, i.e., loc=l/1. In this particu-
lar instance the term 'inner interface' is somewhat mis-

leading because there isno interfacebetween layersat
the inner interface of layer 1, the inner +45 ° layer. The

inner interface of layer 1 is the inner radial location of

thecylinderwail. Circumferentiaily, thefailure occurred
about one-thirdof the distancefrom the crown to the

side(sic= -0.07,see fig.I).The failuremode was fail-

uredue to high stresses perpendicular to the fibers in the

plane of the layer, i.e., cr2. In this particular situation, the

component of _r2 due to bending effects was 3.3 times

larger than the component of cr2 due to inplane effects.

Since failure occurred at the ends of the cylinder, large

bending effects were to be expected due to the bending

boundary layers there. For fiber failure, a stress of

almost twice the level was required, 1.669 MPa, and the

mode of failure was compression in the fiber direction.

The failure occurred in layer 9, the outer layer, at inter-

face 2, the outer interface, i.e., the outer radius of the

cylinder. This was a shift from the inside of the cylinder
for matrix failure to the outside for fiber failure. The

effectofbending was alsoreduced for the fiber failure.

The characteristicsofthefailureforthe quasi-isotropic

cylinderwere similartothosefortheaxially-stiffcylin-

der.The locationof failure,the near-doublingof the

pressuretoproducefiberfailure,and the shiftfrom an

innerlocationformalrixfailuretoan outerlocationfor

fiber failure were all similar. The character of failure for

the circumfercntially-stiff cylinder was somewhat dif-

ferent than the other two. The failure pressure for matrix
failure was lower, and the failure locations were differ-

ent Matrix failureoccurredina layeroutsidethe refer-

ence surface, layer 7, a 90 deg. layer, at the sides of the

cylinder, a/C = x_O.25. At that location bending effects
were not as important as inplaneeffects,as indicated by

the ratio of 0.33/1. An examination of the details of the

deformations of the ellipse (not shown) reveal that at the

crown and keel bending deformationsare more pro-

nounced than at the sides, so the reduced role of bending

effects at the sides of the cylinder was not surprising.

Also, layer 7 was closer to thereference surface, a loca-
tion where therewere lessbending effects, than,say,at

layer 9. For fiber failure for the circumferentially-stiff

cylinder,fibercompressivefailure was again the mode,

and this occurred at the outer radial location in layer 9, a

+45 deg. layer. The circumferential location was about

one-quarterof the distancefrom the crown to the side.

To compute the failure pressure usingthe geo-

metrically nonlinearanalysis,iteration was be used,

each iteration using a different intemai pressure. The

fn'ststepin the iterationIxocessfollowed the failure

anaiysis for the geometricallylinearcase, namely,the

analysis was conducted for a pressure ofpo=0.690 MPL

Then, consideringthe maximum stress criterion as an
example, the seven left-hand sides of the failure crite-

rion were computed, and using po=0.690 MPa the fail-

ure pressure, p_ was computed by scaling. The

geometrically nonlinear analysis was then conducted
using this predicted failure pressure, i.e., now Po was the

failure pressure predictedfrom thefirststep.The seven

left-handsideswere againcomputed and wcrc used to

compute a new failurepressure.This procedure was

repeateduntilthe calculationswere consideredcon-

vergedtothefailurepressure.A similariterationproce-
durewas used fortheHashin criterionand thefourIcR-

hand sidesinthatcriterion.

The second quarterof tableI summarizes the

findingsof the nonlinearanalysesfor the threelami-

natesand the Hashin failure criterion.Consideringthe

axially-stiff case, it is seen that relative to the geometri-

caily linear analyses, geometric nonlinearities led to

American Institute of Aeronauticsand Astronautics



slightly higher failure pressures, e.g., for matrix failure
0.931 MPa vs. 0.896 MPa. As m the linear case, for

matrix failure the tensile stress component 0"2 was

responsible for failure, and for fiber failure, a compres-

sive 0"_was responsible. For both matrix and fiber fail-

ure the through-thickness locations were identical to the
linearcase and the circumferentiallocationof failure

moved just slightly away from the crown. The ratio of

the bending component of stress to the inplane compo-

nent was slightly lower for the geometrically nonlinear
case.Thiswas feR tobe due totheflatteneffectcaused

by geometricnonlinearities.The comments forthe axi-

ally-stiffcylinderapplytothe quasi-isotropiccylinder.

Regarding the circunfferentially-stiffcase: although

geometricnonlinearitiesdidnot appearto significantly

influencematrixfailure,theydid influencefiberfailure

predictions.The predictedmode changed from fiber

compressionfor thelinearanalysistofibertensionfor

thenonlinearanalysis.Additionally,thelocationforthe

nonlinearanalysiswas near the sidesas opposed to

being in the crown area. The reason that the linear and

nonlinear analyses did not agree for the fiber failure
condition is that in the Hashin criterion for tensile fiber

failure the shear stress r12 is involved. For the nonlinear

analysis the value of r12 was greater than for the linear

analysis and the values of tensile 0._ and rl2 near the

side of the cylinder outweighed the high value of fiber

compression stress in the crown region.
The bottom half of table 1 is a summary of

using the maximum stress criterion to predict failure. An
examination of the maximum stress criterion prediction

reveals that many enlries are similar, if not identical, to

the Hashin criterion prediction. For the matrix failure

the stress component 0.2 was so dominant that the

Hashin criterion reduced, in effect, to the maximum
stress criterion. The additional terms in the Hashin crite-

rion had little influence. For fiber compression failure
the Hashin criterion is identical to the maximum stress

criterion, so the entries would be identical in those

cases. The primary difference occurred with fiber failure
for the circumferentially-stiff cylinder. Whereas with

the nonlinear analysis the Hashin criterion predicted
fiber tensile failure at the outer radial location near the

sides, for the reasons discussed above, the maximum

stress criterion prediction was similar to the linear anal-

yses for both the Hashin and maximum stress criteria,

namely fiber compression at the outer radial location m

the crown region.

A comment isin orderregardingthe failures

occurringinthe4-45°layers.First,theselayersareatthe

extremeinnerand outerlocations,sobendingeffectsare

most severeattheselocations.However, anotherfactor

influencesthe4-45°layers.Infig.2 itwas seenthatwith

the elliptical geometry there is a tendency to have a cir-

cumferential displacement component v °. However, at

the ends v ° is restrained to be zero, requiring an mplane

shear force resultant N= to achieve this. The transfor-

mation of the shear effect of N= into the principal mate-

rial directions of the 4-45 ° layer leads directly to a stress

component era. This adds to the magnitude of o"2 in these

off-axis layers. Interestingly, N= is zero at s/C = 0, 0.25,

0.5, and 0.75, and has extreme values roughly halfway
between these circumferential locations.

Alternate View of Failure Predictions

With composite materials there is often scatter

in the results of tests designed to determine failure

stresses. Considering the failure stress of a composite

material to be exactly a certain level is somewhat unre-

alistic. The scatter is due to small unpredictable irregu-

larities in the microstructure of composites and possible

anomalies in the manufacturing process. As a result, the

location with the highest stress may not fail first. A

slightly lower sWcss at another location, coupled with a
microstruetural irregularity, could lead to lower failure

stress levels. To that end, the geometrically nonlinear

failure analysis was used to compute the locations

within the ellipse where the seven left-hand sides in the
Ha,shin failure criterion were within 20*,4 of the failure

level, i.e., the left-hand sides of eqs. 11-14 were in the

range 0.80 to 1.00, with 1.00 corresponding to the cases
discussed in table 1.

Figures 5 through 7 show the locations where
the Hashin failure criterion is within 20*,6 of equaling

unity for the axially-stiff, quasi-isotropic, and circum-

ferentially-stiff laminates, respectively. The location of
first failure, i.e., matrix failure from table 1, is also

shown. The stresses were evaluated using nonlinear

analysis at the matrix failure pressure, pf In each figure

a greatly distorted view of the crown section of the cyl-

inder wall through the thickness from -0.5 < _/H < 0.5
and around the circumference from .0.25 < s/C < 0.25

provides a visual display of the points within 20% of

failure. It is important to note that all these points are at

the clamped end of the cylinder, x/L = 0.50.
Referring to fig. 5 and, as indicated in the table,

the maximum left-hand side value, or initial failure

point, for the axially-stiff case is located at the f'h"St
layer, a +45 ° layer, at the inner radial location of the cyl-
inder at s/C=-0.09. Considering points where the left-

hand side islessthan 1.00, thepointsarcdispersedcir-

cumferentiallyon bothsidesoftheinitialfailurepointin

the fh'st layer at the inner radial location. There are also

points on both sides of the interface between the fast

and second layers. An alternative interpretation of the

6

American Institute of Aeronautics and Astronautics



spatialdistribution of the points is that if the pressure is

increased beyond the value to predict failure at point 1,
then there will be failure at another location. Further

increasesinpressurewould leadtofailureatotherloca-

tions.Itisfeltthatthegeometricdistributionofpoints

would representtheprogressionofdamage asthepres-

sure increases beyond the value necessary to have the

Hashin criteriatoequal1.00.Ifthisinterpretationiscor-

rect,then,matrixcrackingwillaccumulateinlayerI at

the inner radial location (_/H=-0.5) in the range -0.16

eYC _ 0. There willalsobe crackingin layer2 atthe
interfacebetween the Istand 2nd layers(_JH---O.389).

Allthesefailureswould be due tohigh valuesof o_.

Figure6 shows avery similarinterpretationfor

thequasi-isotropic case,though therearesome failures
atouterradiallocations(+45° layer).The circumferen-

tially-stiff c_ in fig. 7 is different. Using the 'progres-
sion of damage' interpretation of the locations of the

points,itisseen failurespreadsfrom the two initial

pointsatthesidesand moves towardthecrown (_/C==O)

along the interfacesbetween layers6,7,and 8, and at

theouterradiallocation.Severalissuesmust be kept in

mind when consideringfigs.5 through7.First,itcould

be thatproperlyaccountingformaterialdegradationdue

tomatrixcrackingwould resultineven greaterspreadof
the locations.The reductionof stiffnessdue to matrix

cracking could cause stresses to increase in nearby loca-

tions, thereby enhancing failure. Also, as stated, the

locations shown in figs. 5 through 7 are at the ends of

the cylinder (x/L = J:0.50). At some point failure will

progress axially as well as circumferentially. Properly

accounting for material degradation may show this hap-

pens beforethereisa significantcircumferentialpro-

gression.Finally,the Hashin criterionor any criterion

forthatmatter,reachesunityattheinnerorouterradial

locationofa particularlayer.This isbecauseforevery

layerthe bending strainsvary linearlywith thickness
and thustakeon extremevaluesattheinnerand outer

radiallocations,never atmidlayerlocations.However,

even though the stresses are the highest at the inner or
outer radial location and lead to failure there, failure

probably propagates through the entire thickness of the

layer. Thus, the matrix failure at the locations shown in

fig. 5, for example, really represent a crackthroughthe
thickness of the layer. For the condition shown in fig. 5,

this means there are matrix cracks through the two inner

layers. The internal pressure is thus developing a leak-

age path through the thickness of the wall. Also, crack

mechanics may well change because the internal pres-

sure is acting on the crack faces. This may lead to fur-

thcrcracking,such ascrackturning at the interfaces. If,

however, an internalbladderor sealantisused,thesce-

narioislikelydifferent.

Finally, it is important to take note of the fact
that the matrix and fiber failures in table 1, and the scat-

taring of points in figs. 5-7, are associated with particu-
lar circumferential locations. This is, of course, because

the stresses vary with circumferential position In effect,

there is a stress concentration as the cylinder is traversed

in thecircumferential directio_As a result, thecylinder

will be prone to fail at a particular circumferential loca-
tion. In contrast, the circumferential location of failure

of a circular cylinder would depend totally on the loca-

tion of material imperfections. So on the one hand an

elliptical cylinder is a disadvantage because of the pres-
ence of a stress concentration, but on the other hand, it

can be determined where strengthening should be

applied to increase the failure pressure.
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Table 1. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders, geometrically linear and
nonlinear analyses, two failure modes, two failure criteria

p_ MPa

Ioc*

Axially-Stiff Qua*Lltmtmpio CimumfQrenttally-stiff

Matrix Fiber Matrix Fiber Matrix Fiber

0.896 1.089 0.903 1.579 0.738 1.551

1/1 (+45) 9/2 (+45) 1/1(+45) 8/2 (+45) 7/2 (go) 9/2 (+45)

._c

J
sIC_ -0.07 -0.08 -0.07 -0.07 x',0.25 -0.08

mode +0' 2 -o 1 +0"2 "°"1 +02 "°1

0"L,/oe 3.3tl 1.25/1 4/1 1.311 0.33/1 1.25/1

m
-1-

Q
.G

p_ MPa 0.931 1.862 0.924 1.800 0.724 1.710

ioc" 1/1 (+45) 9/2 (+45) 1/1 (+45) 8/2 (+45) 7/2 (90) 9/2 (+45)

s/C*" -0.08 -0.11 -0.10 -0.10 i-0.25 0.24

mode +0"2 "_1 +02 .01 +02 +°1
o,J0", 2.7/1 1.2/1 2.2/1 1.2/1 0.38/1 0.5911

p_ MPs 0.938 1.668 0.938 1.579 0.738 1.572

8/2 (+45) 7/2 (90) 9/2 (+45)

s/C** -0.07 -0.08 -0.08 -0.07 :t0.25 -0.08

J _ mode +o 2 "01 +°2 "3t +°2 "_1

_,_AT, 3.3/1 1.25/1 2.86/1 1.3/1 0.33/1 1.25/1
E

ioc" 1/1 (+45) 9/2 (+45) 1/1 (+45)

._E

E

p_ MPa 0.965 1.862 0.958 1.800 0.724 1.834

Ioc" 1/1 +45) 9/2 (+45) 1/1 (÷45) 8/2 (+45) 7/2 90) 9/2 (+45)
c s/C** -0.08 -0.11 -0.10 -0.10 t'0.25 -0.08
0

mode +0"2 "°I +02 "01 +0'2 "01

0"=/o_ 2.3/1 1.2/1 2.2/1 1.2/1 0.38/1 1.28/1

* Locationis givenas layer number/interfaca, where1 is the inner-mostlayerand 1 denotesthe innerand 2 the outerinterface.
The fiberdirectionof the layeris showninpar_them. 0" is theaxialdirection.
*" All failures occuratthe ends ofthe cylinders:s_C'=Ois crown,s/C=¢.0.25am sides,C=circumferenca, s==erclangthmeasure
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Figure 1. Problem description, nomenclature, _md geometry of an elliptical cylinder.
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Figure 2. Effect of elliptical geometry on the displacements of an elliptical cylinder.
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ABSTRACT

Presented is an overview of a semi-analytical solution which was developed to study the

response of internally pressurized elliptical composite cylinders with clamped boundaries. Using

a geometrically linear analysis and the solution scheme, the response of a quasi-isotropic elliptical

cylinder is compared with the response of a quasi-isotropic circular cylinder in order to study the

effects of elliptical geometry. The distinguishing features of the response of an elliptical cylinder

are the inward normal displacement at the ends of the major diameter that occur despite the out-

ward force of the internal pressure, the presence of circumferential displacements, and the pres-

ence of inplane shear strains. These effects lead to spatial variations, including sign reversals, of a

number of displacement, strain, and curvature responses. The responses of a quasi-isotropic ellip-

tical cylinder evaluated using a geometrically linear analysis are then compared to the responses

evaluated using a geometrically nonlinear analysis. It is shown that geometric nonlinearities tend

to flatten certain responses in the crown region, and reduce the magnitude of certain responses in

the boundary region. To study the influence of material orthotropy, the responses of axially-stiff

and circumferentially-stiff elliptical cylinders evaluated using geometrically nonlinear analyses

are examined. It is shown that in some instances material orthotropy can be used to mitigate the

influence of the elliptical geometry and make particular responses look like those of a circular

cylinder. An evaluation of failure using the maximum stress and Hashin failure criteria and geo-

metrically linear and nonlinear analyses is presented for elliptical cylinders. These failure criteria

involve interlaminar shear stresses which are computed by integrating the equilibrium equations

of elasticity through the thickness of the cylinder wall. The failure criteria are used to assess the

mode of failure (e.g., tensile or compressive fiber or matrix modes), the location of failure, and

the pressure at failure. Both criteria predict first failure to occur at the clamped boundaries



because of matrix cracking due to stresses in the plane of the cylinder wall. The predicted failure

pressures and circumferential locations are very similar for the two criteria, and the nonlinear

analyses predict slightly higher pressures at somewhat different circumferential locations. First

fiber failure is also considered. For this failure the two criteria predict similar failure scenarios for

the linear analyses, but they differ in their predictions for the nonlinear analyses. Specifically,

using the maximum stress criterion, the circumferentially-stiff elliptical cylinder is predicted to

fail due to fiber compression, but the Hashin criterion predicts failure to be due to fiber tension,

and at a different circumferential location. Also, first fiber failure pressures are at least a factor of

two greater than the first matrix failure pressure.

Keywords: geometrically nonlinear effects, influence of orthotropy, influence of elliptical geome-

try, internal pressure, maximum sU'ess failure theory, Hashin failure theory
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Chapter 1 Introduction

Due to their high specific strength and stiffness properties, fiber-reinforced thin-walled

composite cylinders have numerous applications in the aerospace industry as structural elements.

Although circular cylinders are most commonly used and studied, future transport fuselages could

have noncircular cross sections, in particular, oval or elliptical cross sections. A noncircular

cross section could be beneficial for blended wing-fuselage structural concepts, improved aerody-

narnics, and increased payload capacity. A number of issues associated with noncircular cross sec-

tions must be addressed. These issues include the effect of noncircular geometry, geometric

nonlinearities, boundary conditions, loadin$ and material orthotropy. This study is concerned

with internal pressurization, which is an important loading for fuselage structures, and cylinders

with elliptical cross sections. There are a number of fundamental issues with this particular load-

ing. For example, a circular cylinder subjected to internal pressure expands outward, whereas, an

elliptical cylinder becomes more circular in shape, as shown in fig. 1-1. For an elliptical cylinder,

deflections are actually inward at certain circumferential locations. Additionally, with internal

pressure there is a net axial force on each end of the cylinder. Assumptions regarding how this

force is reacted by the cylinder have an impact on the assumed conditions at the boundary. These

concerns are addressed in the present study by using a semi-analytical approach to obtain numeri-

cal results. These results are then used to illustrate the differences between a circular and elliptical

cross section cylinders, and geometrically linear and nonlinear effects. Also, the influence of

orthotropy is discussed, specifically, quasi-isotropic, axially-stiff, and circumferentially-stiff
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graphite-epoxy laminates are considered. Failure is addressed. The semi-analytical approach,

developed in a previous study [1], utilizes the Kantorovich and finite-difference techniques to

solve the governing equations. A description of the details of the specific problem and of the

semi-analytical approach is described in the next two sections. The following section outlines the

contents of the remainder of this document.

\_// no pressure

_I pressure _

\ /

Figure 1-1. Effect of internal pressure on cross-sectional deformation of an ellipse.

1.1 Problem Description

The problem considered consists of a cylinder described in fig. 1-2, with a, b, and L denot-

ing respectively, the semi-major diameter, semi-minor diameter, and axial length of the cylinder

reference surface. The degree of ellipticity, e, is defined here as the ratio of the semi-minor and

major diameters, b/a. Alternatively, b/a can be thought of as the cross-sections aspect ratio. The

cylinders considered here are symmetrically laminated and have an ellipticity of 0.7 and 1.0, the

latter corresponding to a circular cylinder. The wall thickness of the cylinder is denoted by H and

the internal pressure by Po. The upper part of the cross-section is referred to as the crown, the

lower part as the keel, and the sides are referred to as the sides.
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W o

w° crown

2a = maj or diameter

2b = minor diameter

e = b/a = ellipticity

C = circumference

Figure 1-2. Problem description, nomenclature, and geometry of an elliptical cylinder.

The cross sectional shape of the cylinder at the reference surface, or midwall location, is

an ellipse lying in the global y-z plane described by

2 2

.v+z = 1.
a 2 b2

(1.|)

The maximum and minimum radii of curvature are

a 2 = b.._2
R_ax = _. and R_I_v a' (i.2)

which occur at the ends of the semi-minor and -major axes, respectively. Locations on the refer-

ence surface are identified by coordinates (x,s), where x is the axial coordinate, measured from the

midspan location, and s is the circumferential arc-length coordinate, measured counterclockwise

from the top, or crown, of the cylinder. The reference surface displacement in the axial and cir-

cumferential directions are denoted as u°(x,s) and v°(x,s), respectively, while the normal displace-
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ment is denoted by w°(x,s). Herein, only thin cylinders are discussed, and the orientation of the

layers is defined relative to the +x axis in the laminate nomenclature. Here it will be assumed the

cylinder ends are clamped to a rigid end plate or bulkhead which can move axially. Accordingly,

clamped-clamped boundary conditions are applied to each end of the cylinder, with the exception

of allowing the end at x = +L/2 end to expand uniformly in the axial direction with displacement

A. The end at x = -L/2 cannot move axially in order to restrict axial rigid body translation. For-

mally, the boundary conditions at the ends of the cylinder (x = __,F2) are as follows:

L u o A @ x +Li) u ° = O@x = --, = = -
2 2

ii) v o

iii) w °

aq¢°
iv)

a_

_0

=0

-0.

(i .3)

The end displacement A is determined by enforcing axial equilibrium of the end enclosure at x =

_ooNx dS = P o Xa b ,

+/_/2, namely,

(1.4)

where N x is the axial force resultant within the cylinder (to be defined shortly), C is the circumfer-

ence of the cylinder reference surface, and the cross-sectional area of the ellipse is nab. Physi-

cally, eq. 1.4 states that the net axial force due to the internal pressure times the cross-sectional

area of the end enclosure must be balanced by the net axial force due to the axial force resultant.

1.2 Solution Approach

The semi-analytical solution procedure begins with the expression for the total potential

energy of the cylinder. The total potential energy is given by
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1 8"= +o-:, ff o.O  , (1.5)

where (is the local through-thickness coordinate within the cylinder wall. The coordinate (

ranges from -H/2 < (< +H/2 and is zero at the reference surface. Of eour_ the axial coordinate

has the limits from -/_/2 _ x _ +L/2, and the circumferential coordinate has the limits from 0 _ s <

C. As evidenced by the integrand in eq. 1.5, the plane-stress assumption is being used. The strains

in the energy expression are given by

o o

e_ = ex + 4",c:

o o

gs = gJ + _'_:_ (1.6)

o o

where the reference surface strains and curvatures are related to the reference surface displace-

meritsby

e_ =_-_ +2_ ,&j (,)

Ovo o _2
o = w_E- 1('o3¢

g, _-_ +R(s) + _\-_.7) (b)

o 0uOrx_ = _ + _ + (_)

o _o
%-

&2
(d)

(e)

(0

(1.7)

Note that the radius of curvature being a function ofs in d's is what makes this problem different

than that of a circular cylinder. The underlined terms in eq. 1.7a-c denote the geometric nonlinear-
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ities. These are the von Karman approximations to the fully nonlinear strain-displacement rela-

tions. Substituting eq. 1.6 into eq. 1.5 and integrating the energy expression through the thickness

of the cylinder wall results in

1 o o -po w° ]dx.ds
(i.8)

= ffg( ,
where eq. 1.8b serves as the reminder that the integrand is strictly a function ofx and s. The force

and moment resultants in eq. 1.8 are defined by

O ONx = %d_"= AH8x +A12e,

o + A228oN, = %de = A_2ex

0

(1.9)

j- 0 0 0M s = crs_d ( = D12tc x + D22tCs + D26tCxs

0 0 0Mxs = rxs(d( = D161cx + D261cs + D661Cxs.

where, as seen from the form ofeq. 1.9, only symmetric and balanced laminates [2] are being con-

sidered.

With the radius of curvature varying circumferentially, a closed-form solution to the prob-

lem is not easily found. Accordingly, an approximate solution is sought. To begin the approximate

solution, the circumferential variation of the radius of curvature is expanded, in a method sug-

gested by Marguerre [3], in a cosine series such that,

1

R(s) =... _ a4ic°s(4i_s/C')

i=O

0.1o)
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where the coefficients a4i are constants which depend on the specific cross-sectional geometry

(semi-diameters a and b) and I is the number of terms needed to properly represent the variation

of the inverse radius of curvature. The dependence of the reference surface displacements on the

circumferential coordinate is approximated using the Kantorovich method by a harmonic series in

a form inspired by the inverse radius of curvature, namely,

u° (x, s) o= Uo(X)+

v° (x, s) o= Vo(X)+

0 0

w (x, s) += Wo(X)

N M
0

u n(x)cos(4nr, s/C)+ _ u°N+ m(x)sin(4mtrs/C)

n=l m =1

M N
0 0

vm(x)c°s(4mxs/C) + _ VM + n(X)sin(4n_rs/C)

m=l n=l

N M
0

Wn(X)COS(4ntrs/C) + _ WON+ m(x)sin(4m_rs/C).

n=l m--1

(I.II)

Both sines and cosines are used to represent all three displacement components, where M and N

determine the number of terms of each. For an isotropic cylinder, sine terms would not be neces-

sary for u°(x,s) and w°(x,s), while cosine terms would not be necessary for v°(x,s). The presence

of the bending stiffness terms D16 and D26 makes inclusion of these terms necessary.

With eq. 1.10 and eq. 1.11, the displacements and the radius of curvature have been

explicitly expressed in terms of the circumferential coordinate, s. Substituting the displacements

ofeq. 1.11 into the strains and curvatures ofeq. 1.7, and the stress and moment resultants ofeq.

1.9 into the energy expression of eq. 1.8, integration of the energy expression can be performed

with respect to s. The integrand of the energy expression is then dependent on the coefficients in

eq. 1.11, which are only a function ofx. As a result, the energy expression can be written symbol-

ically as
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+L C

L?I 0
2

+L_

= t ZFO,i(x),yi(x), y'i(x))&;
2

i = 1,3(N+M+ 1)

(1.12)

In the above they i (x) represent the functional coefficients in eq. 1.11 and ( )' represents differen-

tiation with respect to the axial coordinate x. Although the integrand above is also a function of

cylinder geometry, material properties, and the pressure, they are constants that are not involved

in the variational process. Equating the first variation of the total potential energy to zero results

in the Euler-Lagrange equations for the yi(x) and the associated variationally consistent boundary

conditions at x = .H_./2. In general terms, the Euler-Lagrange equations are

d 2 ( OF ._ d (.OF'] OF = 0

dx"--_kbyi,---_y- -_k,_--_) + Oy--_
(1.13)

and the boundary conditions are

OF

y/ specified or _"i'---;--_'-r 0

d.d._OF _ OF = O.
Yi specified or _----L0-_i,,j - 0y---_

(1.14)

The boundary conditions of eq. 1.3 translate into specifying values ofyi(x) and yi'(x). Defining

intermediate variables in order to reduce the system from a third-order to a first-order form, it is

possible to obtain a set of coupled nonlinear first-order ordinary differential equations of the form

5,/(x) = i'(x)); i,j = 1, 8(N+M+ 1), (1.15)

where

and

0 0

pi(x) = {U°_Vk, Wlc, qk, r_tk, gk, hk}; k= 1,8(N+M+ 1) (1.16)

8 Introduction
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dw_ dqk drk duk hk = dv_
qk=_, rk=_, tk=_, gk=_, _" (I.17)

This process has been automated using the symbolic manipulation package Matl_matica°[4].

The resultingdifferentialequationsinx are writtenintoFORTRAN code using theFORTRANAS-

SIGN package within Mathematica °. These equations are integratedby the finite-difference

method using the IMSL subroutineDBVPFD [5] which is based on a variable-order,vari-

able-step-size algorithm employing Newton's method. By rendering the governing

Euler-Lagrange equationstofirst-orderform, as ineq. I.17,variousderivativesof u°,v°,and w °

are directlyavailablefor computing reference surface strainsand curvatures and force and

moment resultants.More importantly,stressesas a functionof x,s,and _ can be computed.

1.3 Remainder of Document

In the following chapters, using numerical results, a thorough explanation will be given of

the effects of cylinder geometry, specifically circular vs. elliptical cross sections, and geometric

nonlinearities on cylinder responses. Also, the effects of orthotropy will be studied using

quasi-isotropic, axially-stiff, and circumferentially-stiffgraphite-epoxy laminates. Displacements,

reference surface strains and curvatures, and force and moment resultants will be used to define

cylinder responses. A comparison of these cylinder responses will be made with finite-element

analysis to verify the numerical results. These discussions will take place in chapters 2, 3 and 4. In

chapters 5 and 6, two failure theories, the Hashin failure theory and the maximum stress theory,

will be used to assess the pressure capacity of elliptical composite cylinders. Interlaminar shear

stresses are considered by integrating the geometrically linear equilibrium equations of elasticity

in polar coordinates through the thickness at the cylinder wall. These interlaminar shear stresses
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together with the inplane (intralaminar) stresses are used in the failure theories. Failure pressure

levels, failure location, and failure modes are studied. Finally, conclusions of this work will be

presented, and future directions discussed.

I0 Introduction



Chapter 2 Effect of Elliptical Geometry on Cylinder Response

This chapter addresses the influences of ellipticity by using the semi-analytical scheme

described in the previous chapter.

2.1 Numerical Values of Problem Parameters

Though ultimate interest with elliptical cylinders is for application to alrcra_ fuselage

structures, initial experimental work will take place with small scale cylinders. The displacement,

strain, and stress response of these smaller cylinders must be understood before studies of

scaled-up cylinders can commence. To that end, in the present study numerical results will be

shown for eight and nine layer graphite-epoxy cylinders with semi-major diameters of 5 in., ellip-

ticities of 0.7, and lengths of 12.5 in. The material and geometric properties of a layer of graph-

ite-epoxy are taken to be

E I = 18.85 Msi E 2 = 1.407 Msi
(2.1)

G12 = 0.725 Msi v12 = 0.300 h = 0.0055 in.

where h is the thickness of a single layer. The laminates considered are: quasi-isotropic,

[±45/0/90]s; axially-stiff, [±45/02/90_s; circumferentially-stiff, [±45/902/0_s, where 0 degrees

is along the axial direction. These lay-ups were selected because each has at least one layer with

its fibers in the axial direction, at least one layer with its fibers in the circumferential direction,

and ±45 degree layers. Eight or nine layers is a reasonable number from the point of view of man-

ufacturing the cylinders by hand on elliptical mandrels.
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The inverse radius of curvature of eq. 1.10 requires I=7 for convergence of the cosine

series with the exact solution, as shown in fig. 2-1. In fig. 2-1 the vertical axis represents the error

when using the series ofeq. 1.10, and it is seen that I=7 results in minimal error at all circumfer-

ential locations.

0.25

0.20

0.150.10

i 0.05

0.1_

-0.05

-0.10

-0.15

_.25 i i i i I i i ] i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

_C

Figure 2-1.

1.0

/

2tornm ---- 4tmwm ......... 6tm'm= .... 8t_n'a |

]- 3torrrm ----- 5temm ----- 7twnm

Convergence study for the inverse radius of curvature.

Accordingly, the three displacement series of eq. 1.11 require N=7 and M---4 for convergence of

the displacements and force resultants. The displacement series is expanded as follows
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u°(x,s)= U°o(X)+ u°i(x)cos(4xs/C)+ u°2(x)cos(Sxs/C)+ u°s(x)cos(12xs/C)+ u°_(x)cos(16xs/C)

+ u°5(x)cos(20#s/C) + u°6(x)cos(24_/C) + u°7(x)cos(28_/C)

+ u°s(x)sin(4xs/C) + u°o(x)sin(Sxs/C) + U°lo(X)sin(12xs/C) + U°ll(x)sin(16xs/C)

v°(x,s)= v°o(x)+ v°l(x)cos(4x.z/C)+ v°2(x)cos(Sxs/C)+ v°3(x)cos(12xs/C)+ v°_(x)cos(16xs/C)

+ V°5(x)sin(4xs/C) + v°6(x)sin(Sns/C) + v°7(x)sin(12_a/C) (2.2)

+ V°s(X)sin(16xs/C) + v°9(x)sin(2Oxs/C) + V°lo(x)sin(24xs/C) + v°ll(x)sin(2$xs/C)

w°(x,s) = w°o(x) + w°l(x)cos(4xs/C) + w°2(x)cos(Sxs/C) + w°3(x)cos(12xa/C) + w°_(x)cos(16xs/C)

+ w°_(x)cos(2Oxs/C) + w°6(x)cos(24xs/C) + w°7(x)cos(2$xs/C)

+ w°s(x)sin(4xs/C) + w°9(x)sin($xs/C) + W°lo(X)s_n(12xa/C) _- w°ll(x)sin(16xs/C).

Further details regarding convergence can be found in ref. 1.

2.2 Displacements

In order to demonstrate the fill,, rv_,onses of an elliptical cylinder subjected to internal

pressure, a comparison is made with circular cylinders. For this comparison a quasi-isotropic lam-

inate is chosen and a geometrically linear analysis is used. The basic cylinder responses consid-

ered are reference surface displacements, reference surface strains and curvatures, and force and

moment resultants. Figure 2-2a-f illustrates axial, circumferential, and normal displacements as a

function of the axial and circumferential coordinates. The displacements have been normalized by

the laminate thickness H. An internal pressure of Po=lO0 psi is used to compute the results in

these figures. The format of the fig. 2-2a-f illustrates the response of one-eighth of the cylinder.

The coordinate locations have been normalized and, referring to fig. 1-2, the range of 0 < x/L <

0.5 and 0 < s/C < 0.25 is considered. Due to the presence of D16 and D26, the problem does not

exhibit octal symmetry. However looking at only one eighth of the cylinder provides a fairly accu-

rate detailing of the response, and simplifies displaying the results. Implementing symmetry and
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antisymmetry arguments for various responses, the response for the remainder of the cylinder can

be envisioned.

Regarding the axial displacement of fig. 2-2a-b, for an internally pressurized cylinder the

axial displacement is the net result of the pressure forcing the end enclosures apart and the Pois-

son effect due to circumferential expansion pulling them together. For a circular cylinder, this

results in a nearly linear axial displacement with the axial coordinate. Since the internal pressure

problem for a circular cylinder is axisymmetric, the axial displacement does not vary with s.

Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x/L = -0.5,

and at x/Z = 0.5 the axial displacement is determined by eq. 1.4. Because of the nearly linear vari-

ation with x, the axial displacement at x/L = 0.5 is approximately twice the value at x/Z = 0. As for

the elliptical cylinder, the internal pressure problem is not axisymmeu'ic, and the axial displace-

ment is far from being linear with x. For the elliptical cylinder notice that along the crown of the

cylinder, s/C=O, the axial displacement is positive, while along the side of the elliptical cylinder

the axial displacement is actually negative at certain axial locations. Since the axial displacement

changes signs with spatial location, there are some locations besides x---L_ where the axial dis-

placement is zero. This is not a situation that appears in the circular case. It should be noted, how-

ever, that the axial displacement at x/L=O is practically independent of s, as it is at x/L=0.5, and

the axial displacements at these locations differ by a factor of 2, as they do for the circular case.

Figure 2-2c-d illustrates the circumferential displacement, a response that clearly distin-

guishes an elliptical cylinder from a circular cylinder. An internally pressurized circular cylinder

has no circumferential displacement response for balanced symmetric laminates. However, the

elliptical case shows circumferential movement away from the sides and toward the crown and

keel of the cylinder. Figure 2-2e-f illustrates another distinguishing difference between a circular
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and elliptical cylinder, as was mentioned in connection with fig. 1-1. The normal displacement of

a circular cylinder is uniformly outward. In contrast, for the elliptical case the cylinder tends to

become more circular. The elliptical cylinder under internal pressure moves outward at the

crown and keel, but moves inward at the sides. As will be seen, this has important consequences

at the ends of the cylinder.
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2.3 Strains and Curvatures

A comparison of reference surface strains in circular and elliptical cylinders provides a

further demonstration on the influence of geometry on responses. In fig. 2-3a-f normalized refer-

ence surface strains are compared. Note that from here forward all normalized terms are denoted

by an overbar. The normalization factor for the strains is the circumferential reference surface

midspan strain in an internally pressurized quasi-isotropic circular cylinder, namely,

---- _ "lPo_ (2.3)
_1i1:: -A_z)

where the A_ for a quasi-isotropi¢ laminate are used. As a result of this normalization, the pres-

sure level used in the calculations does not influence the magnitudes of the responses shown in

the figures.

The circumferential strain, es, shown in fig. 2-3a-b, varies considerably with both axial

and circumferential locations for the elliptical case, where, as, the circumferential smfins for the

circular cylinder vary only with axial location and only near the ends. This behavior for all

ellipses can be explained by studying the relationship between circumferential strain and dis-

placements in eq. 1.To. As seen in that equation, the inverse radius of curvature and the change in

v° with respect to circumferential location determine the behavior of circumferential strain. In the

circular case v° is zero, and therefore does not change with respect to circumferential or axial

location, and the inverse radius of curvature is constant with s. The circumferential strain is deter-

mined solely by the inverse radius of curvature term. In the elliptical case, v° and the inverse

radius of curvature change significantly with respect to circumferential location and result in the

behavior in fig. 2-3b. For the elliptical case, except for the cylinder ends, there is no location
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where the circumferential strain is zero, and it changes sign and magnitude with location The cir-

cumferential strain is zero at the ends due to boundary condition on _' and w ° given in eq. 1.3.

The axial strain, _°x, shown in fig. 2-3c-d, shows behavior similar to the circumferential

strain. For instance, in the circular case the midspan regions exhibit uniform strains, and in the

elliptical case the strains vary with both axial and circumferential locations, and, in fact, change

sign. However, the driving force behind these similar behaviors is due to a different displacement.

The relationship between axial strain and displacements is shown in eq. 1.7a as the change in u°

with respect to axial location. In the circular case, u° does change with respect to axial location,

but the change is nearly linear, resulting in a uniform axial strain in the midspan region. For the

elliptical case, u° also changes with respect to axial location, but the change is nowhere near lin-

ear and therefore the axial strain, shown in fig. 2-3d, is not uniform.

The shear strain, ?or.,, shown in fig. 2-3e-f, varies considerably with the axial and circum-

ferential location for the elliptical case, while the shear strain for the circular case is zero. The

relationship between shear strain and displacements is shown in eq. 1.7c to be dependent on the

change in u° with respect to circumferential location and the change in v° with respect to axial

location. As a result, the shear strain for elliptical cylinder varies significantly with both circum-

ferential and axial location. The presence of shear strain is another distinguishing feature of the

elliptical cylinder. Note also that the shear strain in an ellipse is as large, or larger, than the other

two strain components.
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Comparisons of circumferential, axial, and twist curvatures, _j, _o and Tc°xs respec-

tively, for circular and elliptical cylinders are also necessary to demonstrate the influence of ellip-

ticity on responses. To make the curvatures comparable to the previous figures involving the

strains, the curvatures are converted to normalized strain measures by multiplying them by 1-1/2

and then dividing this result by the quantity in eq. 2.3. The result is the normalized strain that

would occur at the outer surface of the cylinder due to the curvature. (Note that by multiplying the

curvature by -I"t/2,the strain that would occur at the inner surface of the cylinder due to the curva-

ture can be computed.)

The curvatures, shown in fig. 2-4a-f, are strictly a function of normal displacement, w°,

and how it varies with the x and s coordinates, as given by the last three expressions of eq. 1.7.

The magnitudes of the curvatures are notable because the axial curvature is an order of magnitude

greater than the circumferential or twist curvatures. Due to the uniform outward normal expansion

and a lack of variation with the s coordinate, the circular cylinder has zero circumferential and

twist curvatures. The boundary conditions on w°, from eq. 1.3, causes w ° to have a gradient in the

x direction. Thus the axial curvature shows a variation with x for the circular cylinder.

In contrast, the elliptical cylinder does not have uniform outward normal expansion, rather

it varies both with the x and s coordinates. As a result, the circumferential curvature varies with

both x and s in the midspan region, but goes to zero at the boundary. This behavior at the bound-

ary is caused by the boundary conditions which force w ° to be independent of s there. The axial

curvature is zero in the midspan region, but varies in the boundary region. Focusing on the behav-

ior at the boundary, recall the normal displacement at the boundary is forced to zero for an ellipti-

cal cylinder, while away from the boundary, as shown in fig. 1-1, the normal displacement is

outward at the crown and keel and inward at the sides. This situation creates axial curvature which
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is positive on the sides and negative on the crown and keel. The twist curvature is due to a varia-

tion in w ° with both the x and s coordinates. At the boundary the twist curvature, like the circum-

ferential curvature, is zero. However, beyond the boundary, the twist curvature varies with both x

and s.
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2.4 Force and Moment Resultants

The circumferential, axial, and inplane shear force resultants, Ns, Nx, and Nxs, respectively,

seen in Figure 2-Sa-f, are normalized by the midspan hoop force resultant for a circular cylinder,

namely,

poR. (2.4)

The force resultants are based upon a combination of the strains seen in Figure 2-3a-f, each multi-

plied by a constant, A/j, as given in eq. 1.9a-c. Since A16 andA26 are zero due to a balanced lami-

nate scheme, the circumferential and axial force resultants are a combination of only the reference

surface circumferential and axial strains, and the shear force resultant is proportional only to the

reference surface shear strain.

Because of the normalization given in eq. 2.4, the normalized circumferential force result-

ant for a circular cylinder is unity at the midspan, but deviates from unity at the boundary due to

end effects there. The circumferential force resultant for the elliptical case varies with the x and s

coordinates, but, for a given s, behaves similarly to the circular cylinder case in the x direction. Of

note is that at the midspan the average of the circumferential force resultant for the elliptical cyl-

inder case is approximately equal to the circumferential force resultant for the circular cylinder

case, namely unity.

Again because of the normalization given in eq. 2.4, for the circular cylinder case the nor-

realized axial force resultant is 1/2 and is spatially uniform. In contrast, the axial force resultant

for the elliptical cylinder case varies with the x and s coordinate. Concentrating on the midspan of

the elliptical cylinder, it is seen that the sides of the cylinder are in axial compression and the

crown and keel are in tension. Concentrating on the boundary, it is seen that the sides of the cylin-

der are in tension and the crown and keel are in compression, just the opposite of the midspan. As
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with the axial displacement for an elliptical cylinder, the axial force resultant changes signs with

spatial location, causing some locations to be zero. This is not a situation that appears in the circu-

lar case.

The inplane shear force resultant for the circular case is zero due to the shear strain being

zero. For the elliptical case, the shear force resultant is nonzero varies considerably with both x

and s, and the magnitude is comparable to that of the circumferential and axial force resultants.

n O

Though it cannot be seen in the figure, Nxs is not zero at x/L=0.5. Since _-_ is nonzero there, Nx_

is nonzero there.
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The circumferential, axial, and twist moment resultants, Ms, _'x, and M'=s, respectively, are

normalized by the factor H/2 times the midspan hoop force resultant in a circular cylinder,

namely,

PoR2 H- (2.5)

The moment resultantsare based upon a combination of the curvaturesseen in fig.2-4a-f,each

multipliedby a bending stiffness,D_-,as given in eq. 1.9d-f.Recallfrom fig.2-4 thatthe axialcur-

vatureisan order of magnitude greaterthan the circumferentialor twistcurvatures.However, the

bending stiffnesses,Dip controlthe degree to which the curvatureinfluencesthe moment result-

ants.For the quasi-isotropiclayup used,DI6 and D26 are an orderof magnitude smallerthan DII ,

D12 ,D22 ,and D#6. As a result,the circumferentialand axialmoment resultantsare dominated by

_c°x,as can be seen by examining thecharacterof 7c°xvs.x and s and M', and M'x vs.x and s,partic-

ularlynear the ends. On the other hand, for the twistmoment M'xa,D66 _cOx3issimilarin magni-

tude to D16 _c°xboth of which are largerthan D26 _'s.Therefore,M'_ iscontrolledby both _.o

and _c°x. Note that _ is the smallest of the three moment resultants.

Continuing with the discussion of the moment resultants: the most significant portion of

circumferential, axial, and twist moment resultants is at the boundary. There the moment result-

ants are simply a response to the clamped boundary condition from eq. 1.3. The circular cylinder

response to internal pressure is a uniform outward normal expansion which is restricted to be zero

at the boundary, independent of s. The moment resultants at the boundary of fig. 2-6a, c,e show a

response not dependent on the s coordinate. However, because the elliptical cylinder response to

internal pressure is inward normal displacement on the sides and outward normal displacement on

the crown and keel, the moment resultants on the boundary are dependent on s. This is reflected in
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fig. 2-6b,d,f with a sign reversal in the moment resultants at the boundary between s/C=O and

s/C=0.25.
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The transverse shear stresses %x_and xs_ are not directly included in the energy expression

of eq. 1.5. Therefore, there are no transverse shear force resultants associated with these stresses

in the theory presented. However, Newtonian equilibrium approaches indicate that transverse

shear force resultants are necessary for enforcing equilibrium. Moment equilibrium of a differen-

tial element of the cylinder wall dictates the following relation between transverse shear force

resultants, Qx and Qs, and moment resultants"

In terms of transverse shear stresses

OMx c_,fxs

omx$ Ores.

+_a

Qx = j'_xx_d_
2

+_H

Q8 _ .I

(2.6)

(2.7)

2

Since the present theory involves the moment resultants that appear on the right side of the equa-

tions in eq. 2.6 as explicit functions ofx and s, Qx and Qs can be computed from eq. 2.6.

The circumferential and axial transverse shear force resultants, Us and _x, respectively,

are illustrated in fig. 2-7a-d, and they are normalized by the same factor used for the force result-

ants, namely eq. 2.4. Similar to the moment responses, the significant transverse shear force

resultants are restricted to the boundary. It is essentially these force resultants that enforce the

w°=0 condition at the boundary. The uniformity of the circular ease in the s direction results in a

reaction at the boundary that is independent ofs. However, with the elliptical cylinder, the values

of Q'-sand Qx change sign at the boundary. This is reflected in fig. 2-6b,d with a sign reversal at the
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boundary between s/C=O and s/C=0.25. Note that the magnitudes of the transverse shear force

resultants are much less than the magnitudes of the inplane force resultants.
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• 0.5
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0.04

Figure 2-7. Influence of eilipticity on the transverse shear force multants
of a quasi-isotropi¢ cylinder.

2.5 Summary of the Effects of Eilipticity

The effects of ellipticity seen in this chapter included several key issues. For instance,

responses for the elliptical case varied with both the x and s coordinate. This variation was seen in

every elliptical response, either over the entire domain, or at the boundary. Also, axial responses

for the elliptical case were compressive for axial displacement, axial strain, and axial force result-
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ant. For the elliptical cylinder, the circumferential displacement and shear force resultant were not

zero, whereas, both of these responses were zero for the circular cylinder. Finally, an ellipticity of

0.7 caused a change in sign of the response at the boundary for axial curvature, all moment result-

ants, and the shear force resultants as s varies from s/C=O to s/C'=0.25. It is felt less severe

ellipses, e.g., e=0.90, may not experience these sign reversals. To this point the effects of elliptic-

ity have been evaluated using a geometrically linear analysis for both circular and elliptical cylin-

ders consmJcted with a quasi-isotropic laminate. In the next chapter the focus will be shifted from

comparing the response of elliptical cylinders with circular cylinders to comparing the responses

of dliptical cylinders as predicted by the geometrically nonlinear theory with the responses as

predicted by the linear theory.
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Chapter 3 Effect of Geometric Nonlinearities on Cylinder Response

The differences between linear and nonlinear analyses are strictly due to the nonlinear

terms in the sU'ain-displacement equations, as given by the underlined terms in eq. 1.7a-c. This

chapter examines the differences between linear and nonlinear analyses created by these nonlinear

terms. For this comparison a quasi-isotropic laminate is again chosen, and responses are evaluated

using both geometrically linear and geometrically nonlinear analyses, but for just an elliptical cyl-

inder. The effects of geometric nonlinearities are shown using three different types of figures. The

first type is a three-dimensional format illustrating the response of one-eighth of the cylinder, as

in the previous chapter. The coordinate locations range from 0 < x/L < 0.5 and 0 < s/C < 0.25. The

remaining types are two-dimensional in format, with the desired response plotted as a function of

x/L or s/C. These two-dimensional format graphs show a comparison of linear and nonlinear anal-

yses along a line at a particular s/C or x/L location for the purpose of a closer examination of an

issue that may be difficult to discern from a three-dimensional format. A comparison of linear and

nonlinear analyses are shown only for responses that display significant differences, not all

responses.

3.1 Displacements

Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x/L ffi

-0.5, and at x/L = 0.5 the axial displacement is determined by eq. 1.4. Recall also that for the linear

analysis, and as was discussed earlier in connection with fig. 2-2b, the axial displacement at x/L=0
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is practically independent of s and it is one-half the value of the axial displacement at x/L=0.5.

This factor of two also exists for the nonlinear case. However, the magnitude of the axial displace-

ment response differs for the two analyses. As seen in fig. 3-1 and fig. 3-2, the nonlinear analysis

requires a slightly smaller axial end displacement, or A, to satisfy the axial equilibrium given in

eq. 1.4. Figure 3-1 is a three-dimensional format figure and fig. 3-2 is a two-dimensional format

figure with the axial displacement given as a function of x/L at two different s/C locations, s/C =

0.0 and 0.25. Though the overall characters of the axial displacement responses are the same for

linear and nonlinear analyses, the displacement difference at x/L = 0.5 is evident The existence of

negative axial displacements is also clearly seen in this figure.
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Figure 3-1. Effect of geometric nonlinearities on the axial displacement.
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Figure 3-2. Effect of geometric nonlinearities on the axial displacement:
linear vs. nonlinear at x/L = 0.

Comparing linear and nonlinear analyses, the circumferential displacements appear almost

identical as shown in fig. 3-3. However, when circumferential displacements are plotted as a rune-

tion ofs/C along x/L = 0 (midspan), as in fig. 3-4, a difference in the displacement magnitudes is

detected. For the linear analysis, the extreme value of v°/H is -0.4918 and it is located at s/C =

0.1458. For the nonlinear analysis, the extreme value of v°/H is -0.4633 and it is located at s/C =

0.1563. In short, the extreme circumferential displacement in the nonlinear analysis is smaller in

magnitude by approximately 5.8%, and is also shifted approximately 6.7% towards the side of the

cylinder.
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Figure 3-4. Effect of geometric nonlinearities on the circumferential displacement:
linear vs. nonlinear at x/L ffi 0.

The normal displacement, shown in fig. 3-5 and fig. 3-6, tends to 'flatten' relative to the

linear analysis when evaluated using a nonlinear analysis. The normal displacement, as seen in

fig. 3-6, evaluated using a nonlinear analysis moves outward less in the crown region, represented

by 0 <__s/C < O. 10, than does the normal displacement evaluated using a linear analysis. This is due

to the effect ofN s coupling with w ° through geometrically nonlinear effects.
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Figure 3-6. Effect of geometric nonlinearities on the normal displacement:
linear vs. nonlinear at x/L = O.

All strain, curvature, and force and moment resultant responses can be expressed in terms

of the displacements, and as just shown in fig. 3-1 through fig. 3-6, each of the displacements pre-

dicted using a nonlinear analysis varies from the displacements predicted using a linear analysis.

Therefore, each of these displacement-dependent responses can be expected to also vary using a
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nonlinear analyses. However, some responses show little difference between linear and nonlinear

analyses. To follow is a discussion of the responses that do show differences.

3.2 Strains and Curvatures

The circumferential strain for the nonlinear analysis follows the same trend as the circum-

ferential strain for the linear analysis, as seen in fig. 3-7 and fig. 3-8. However, the circumferential

strain at the crown of the cylinder using the nonlinear analysis does not reach the same magnitude

as the circumferential strain at the crown of the cylinder using the linear analysis. The nonlinear

circumferential strain from eq. 1.7a depends on the variation ofv ° with s, w°, the inverse radius of

curvature, and an additional nonlinear term which is the square of the variation of w ° with s. As

seen earlier, the normal displacement, w °, experiences a 'flattening' effect, which causes w° and

the variation ofw ° with sto be smaller in magnitude at the crown of the cylinder. Also, v ° shows a

reduction in magnitude, which lessens the magnitude of the variation of v° with s. All of these

reactions to a nonlinear analysis combine to result in a lower magnitude for _° s. The differences

between linear and nonlinear analyses for the axial strain and shear strains, from eq. 1.7a and c,

appear to be negligible as compared with the difference in the circumferential strains.
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The differences between linear and nonlinear analyses for circumferential curvature are

easily visible in fig. 3-9 and fig. 3-10. In the midspan region for the nonlinear analysis case, there

is a significant 'flattening' along the crown of the cylinder. The definition for circumferential cur-

vature, given in eq. 1.7e as the second derivative of w ° with respect to the s coordinate, is the

same for both the linear and nonlinear analyses. As the normal displacement experiences a 'flat-
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Figure 3-10. Effect of geometric nonlinearities on the circumferential curvature:
linear vs. nonlinear at x/L = 0.

The differences between linear and nonlinear analyses for axial curvature, as seen in fig.

3-11 and fig 3-12, are slight in comparison to differences in the circumferential curvature. In the

midspan region there is virtually no difference, both analyses predicting zero axial curvature. The
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differences between linear and nonlinear analyses for axial curvature exists almost solely in the

boundary region, where the axial curvature experiences a change in sign. For the nonlinear case,

at the boundary, fig. 3-12, the magnitude of the positive and negative axial curvatures changes

slightly, such that the sides have more curvature and the crown and keel have less, and thus the

point where axial curvature changes sign moves circumferentially. The influence of the nonlinear-

ities on the axial curvature is explained as follows: The definition for axial curvature, given in eq.

1.7d as the second derivative ofw ° with respect to the x coordinate, is the same for linear and non-

linear analysis. The boundary conditions given in eq. 1.3 require that w ° and i_¢° be zero at the

end. Since by fig. 3-6 the magnitude ofw ° at the crown is less for the nonlinear case, the axial cur-

vature has less to overcome in order to enforce these boundary conditions at the crown of the cyl-

inder. On the other hand, again referring to fig. 3-6, the magnitude of w ° at the sides of the

cylinder is slightly greater for the nonlinear analysis as compared to the linear analysis. Therefore,

the axial curvature for the sides is slightly greater for nonlinear case.

The differences between linear and nonlinear analyses for twist curvature is not significant

compared to the circumferential and axial curvatures.
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linear vs. nonlinear at x/L -- 0.5.

3.3 Force and Moment Resultants

The nonlinear circumferential force resultant follows the same trend as the linear circum-

ferential force resultant, as seen in fig. 3-13 and fig. 3-14. However, the circumferential force

resultant at the crown of the cylinder using nonlinear analysis does not reach the same magnitude

as the circumferential force resultant at the crown of the cylinder using linear analysis. This is the
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same behavior as seen for circumferential strain, fig. 3-8, which, as seen in eq. 1.9b, is a part of

the circumferential force resultant. The axial force resultant shows this same reduction at the

crown of the cylinder, although the reduction is less significant, and it is also due to the differ-

ences between linear and nonlinear analyses for the circumferential strain. The differences

between linear and nonlinear analyses for the shear force resultant are not significant compared to

the differences for the circumferential and axial force resultants.
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Figure 3-14. Effect of geometric nonlinearities on the circumferential force resultant:
linear vs. nonlinear at x/L = 0.

The differences between linear and nonlinear analyses for circumferential moment result-

ant, as seen in fig 3-15 andfig 3-16, are found in both the midspan and boundary regions. In the

midspan region for the nonlinear case, there is a reduction in the crown region of the cylinder, and

an increase in the side region, as was seen with the circumferential curvature of fig. 3-10. Also,

there is a change in the response at the ends due to nonlinear analysis, as was seen with axial cur-

vature. However, the difference in response between linear and nonlinear analyses in the bound-

ary region is significantly less than the difference in response in the midspan region. The

definition for circumferential moment resultant, given in eq. 1.9e as a linear combination of 7c"s,

_x,, and _x_, is the same for linear and nonlinear analysis. Since g'°s and _° x are both a part of the

circumferential moment resultant, the differences between linear and nonlinear analyses from

each of these curvatures are reflected in the difference for the circumferential moment resultant.

Although not shown here since they are small, the same reasoning applies to differences there are

in the axial and twist moment resultants.
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Figure 3-16. Effect of geometric nonlinearities on the circumferential moment resultant:
linear vs. nonlinear at x/L = 0 and 0.5.

The transverse shear force resultants, _j and _x, seen in figs. 3-17 and 3-18, and figs. 3-19

and 3-20, are defined in eq. 2.6 and depend on the moment resultants. As seen with the moment

resultants, the difference between linear and nonlinear analyses occurs mostly in the boundary

region. The magnitude of the peaks of the transverse shear force resultants at or near the sides are

higher for the nonlinear case, while near the crown they are lower. Most noteworthy for Qs is the
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change in sign at the boundary, and the point at which the sign changes. The circumferential trans-

verse shear force resultant changes sign at s/C= 0.1250 for the linear analysis and at s/C = 0.1458

for the nonlinear analysis. However, for Qx, the change in sign is at approximately the same s/C

location for both analyses.
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Figure 3--17. Effect of geometric nonlinearities on the circumferential transverse
shear force resultant.
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m

While Qs and Qx represent the transverse shear force resultant for the linear analysis, there

are other transverse force resultants defined for the nonlinear analysis. The Qs and Qx just shown

in fig. 3-17 through fig. 3-20 for the nonlinear case have the same definitions as the linear case

and they are given in eq. 2.6. These definitions for Qs and Qx for the nonlinear case still represent
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transverse shear force resultants. However, they do not act strictly in the outward or inward nor-

mal direction, but are rotated away from the normal direction. The transverse force resultants

(note the absence of the word 'shear') in the normal direction for the nonlinear case are denoted

here as Vs and Vx, and are given by,

c?M,_ OMxs o%° o%,°

(3.1)

ig'lxs_ls_°_s°v. + +I¢.

These definitions of the transverse force resultants are the consequence of enforcing moment

equilibrium for a deformed element of cylinder wall. For the nonlinear analysis Vs and Vx axe

what is needed to enforce w°=O at the boundary. As the definition of Vs and Vx include inplane

force resultants Ns, Nx, and Nx_, and hence ors, crx, and r_, Vj and Vx are not, strictly speaking,

shear force resultants in the spirit of eq. 2.7. They are thus referred to as transverse force result-

ants.

The normalized nonlinear circumferential and axial transverse force resultants, Fs and F'x

respectively, as illustrated in fig. 3-21 and fig. 3-22, are normalized by the same factor used for

the force resultants in eq. 2.4. As seen in fig. 3-21, the differences between _s and Vs are signifi-

cant in all regions. On the other hand, Qx and F"x, as in fig. 3-22, have similar behaviors in the

midspan and boundary regions. However, the surface of Vx near the boundary appears smoother

than the surfaceof Qx.
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Figure 3-21.

0.02

0.01

0.00

Vs -0.Ol

-0.02

-0.03

wc

Circumferential transverse force resultants.

Qx

0.03' 0.06 '

0.04 004O.02 0.02

0.00 0.03

-0.02 __ -0.02

-0.04 V x -0.04

-0.0e -0.00
0.5 -0.08 0.5

.0.08 0.4 0.4
.0.10 -0.10'

.0.12 -0.12

0.1 0.1

0.0 O.0

wc

Figure 3-22. Axial transverse force resultants.

3.4 Summary of the Effects of Nonlinearity

The effects of geometric nonlinearities seen in this chapter included several key issues.

Between linear and nonlinear analyses, the axial displacement displayed an overall difference in

magnitude, the circumferential displacement had a shift in the local minimum, and the normal dis-

placement flattened at the crown of the cylinder. Aside from the displacements, differences

between linear and nonlinear analyses, if any exist, seemed to split into two categories, those due
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to flattening of the crown of the cylinder, and those involving a change in magnitude of the behav-

ior at the boundary. Flattening of the crown of the cylinder was seen in the circumferential strain,

circumferential curvature, and circumferential force resultant. The change of the behavior at the

boundary was seen in axial curvature, and axial and circumferential transverse shear force result-

ants, Us and Qx- The moment resultants showed both behaviors, a flattening in the crown and a

change of magnitude at the boundary. Also, two definitions of the transverse force resultants were

introduced. There were significant differences between the circumferential transverse shear force

resultant, Qs, and the circumferential transverse force resultant, Vs.

The next chapter addresses the consequences of varying the orthotropy of the cylinder.

Cylinder responses are compared for axially-stiff, quasi-isotropic, and circumferentially-stifflam-

inates.
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Chapter 4 Effect of Material Orthotropy on Cylinder Response

Thus far, the influences of elliptical geometry have been studied using a linear analysis

and a quasi-isotropic cylinder, and the influences of geometric nonlinearities have been studied

using a quasi-isotropic cylinder. In this chapter the focus is shifted from the influence of elliptical

geometry and geometric nonlinearities to the influence of material otholropy. The quasi-isotropic

laminate considered in the previous chapter will be compared with axially-stiff and circumferen-

tially-stiff laminates using a geometrically nonlinear analysis for an elliptical cylinder. Each

laminate has a different response to internal pressure due to the percentages of fibers running in

the axial and circumferential directions. The axially-stiff laminate has almost 50% of the fibers

aligned with the axial direction, the circumferentially-stiff laminate has almost 50% of the fibers

aligned with the circumferential direction, and the quasi-isotropic has an equal number of fibers

aligned with the axial, circumferential, and ±45 ° direction. For this study of the influence of

orthotropy, a three-dimensional format figure for each of the three laminates will again be shown,

along with two-dimensional format figures along a line at a particular s/C or x/L location for the

purpose of a closer examination of an issue that may be difficult to discern from the three-dimen-

sional format figures. Only those responses which show any significant differences due to orthot-

ropy are discussed.
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4.1 Displacements

Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x/L =

-0.5, and at x/L = 0.5 the axial displacement is determined by eq. 1.4. It appears that for all the

laminates the axial displacement at x./L -- 0.5 is approximately twice the value at x/'L -- 0. How-

ever, the magnitude of the axial displacement response differs for the three laminates. As seen in

fig. 4-1, the circumferentially-stifflaminate requires a higher axial end displacement, or A, to sat-

isfy the axial equilibrium given in eq. 1.4 than either the quasi-isotropic or axially-stifflaminates.

In fact, the axially-stiff elliptical cylinder under internal pressure evaluated using nonlinear analy-

sis requires a negative axial displacement to satisfy the axial equilibrium equation. Though the

overall characters of the axial displacement responses are the same, the displacement difference at

x/L = 0.5 is evident.
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Figure 4-1. Influence of orthotropy on the axial displacement.

The circumferential displacements for the various laminates, as seen in fig. 4-2, have a

similar overall behavior. The circumferential displacement is zero at x/L=0.5 due to the boundary

conditions given in eq. 1.3, and increases in magnitude to a local extreme at s/C = 0.1563 at the

midspan. However, the magnitude of this local extreme varies between the quasi-isotropic, axi-

ally-stiff, and circumferentially-stiff laminates. In fig. 4-2a, the three laminates are closely exam-

ined along the line at x/L=0. The circumferential displacement for the axially-stiff laminate is the

smallest in magnitude, while it is largest in magnitude for the quasi-isotropic laminate.
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Figure 4-2. Influence of orthotropy on the circumferential displacement.

Although the overall behavior of the normal displacement is unaffected by orthotropy, as

seen in fig. 4-3, the magnitude of the normal displacement at the midspan is controlled by the

orthotropy. At the crown of the cylinder the normal displacement for the axially-stiff laminate is

greater than for the circumferentiaUy-stiff laminate, but less than for the quasi-isotropic laminate.

However, at the side of the cylinder the situation is somewhat reversed and the magnitude of the

normal displacement for the circumferentially-stiff laminate is greater than for the axially-stiff

laminate, but again less than the magnitude of the normal displacement for the quasi-isotropic
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laminate. In general, the circumferentially-stiff laminate best controls expansion at the crown of

the cylinder and the axially-stiff laminate best controls contraction at the side of the cylinder.
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Figure 4-3. Influence of orthotropy on the normal displacement.

4.2 Strains and Curvatures

As seen in fig. 4-4, the degree to which the circumferential strain varies with the s coordi-

nate at the midspan is completely affected by the laminate considered. Recall from fig. 2-3a-b, the

circumferential strain for a circular cylinder has no variation with the s coordinate, while the cir-

cumferential strain for the elliptical cylinder varies considerably with the s coordinate. As seen in
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fig. 4-4, at midspan the circumferentially-stiff laminate mitigates, to a high degree, the effect of

eUipticity, as the strain does not vary much with s there. The circumferential strain for the axi-

aily-stiff and quasi-isotropic laminates varies more with the s coordinate at the midspan. There-

fore, it appears that the percentage of fibers in the circumferential direction controls the degree of

variation of the circumferential strain with the s coordinate at the midspan.
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Figure 4-4. Influence of orthotropy on the circumferential strain.

As seen in fig. 4-5, the degree to which the axial strain varies with spatial location is also

affected by the laminate considered. Comparatively, the axial strain for the axially-stiff laminate
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varies least with both the x and s coordinates and it varies the most for the circumferentially-stiff

laminate. Recall from fig. 2-3c-d, the axial strain for a circular cylinder has no variation with the s

coordinate, while for the elliptical cylinder it varies considerably with both the x and s coordinate.

Although the axiaUy-stifflaminate doesn't completely mitigate the effect of elliptieity on the axial

strain at midspan, the increased percentage of fibers in the axial direction conu'ols the degree of

spatial variation for the axial strain there. To be noted, the degree of orthotropy has little if any

influence on the shear strain distribution with x and s.
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Figure 4-5. Influence of orthotropy on the axial strain.
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As seen in fig. 4-6, in the midspan region the axial curvature is similar for all orthotropies,

namely zero. In the boundary region, however, the variation with s of the axial curvature depends

on the orthotropy. Recall that the behavior of the axial curvature at the boundary is due to the

clamped boundary conditions imposed on the cylinder ends, and that the elliptical shape forces a

reversal in curvature at the boundary as s/C changes from 0 to 0.25. The orthotropy affects the

degree of the reversal in curvature at the boundary. Comparatively, at the boundary, the axial cur-

vature for the axially-stiff laminate varies least with the s coordinate, and it varies the most for the

circumferentially-stiff laminate. Therefore, the percentage of fibers in the axial direction controls

the degree of reversal of the curvature at the boundary. Interestingly, the axially-stiff elliptical cyl-

inder evaluated using a linear analysis instead of a nonlinear analysis does not show this reversal

of curvature.
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Figure 4-6. Influence of orthotropy on the axial curvature.

As seen in fig. 4-7, the overall behavior of the twist curvature is similar for all orthotro-

pies. However, the magnitude of the local extreme in the twist curvature, and its location with x

and s, changes with the degree of orthotropy. The twist curvature for the circumferentially-stiff

laminate has a minimum value of-0.3796 located at x/L=0.4758 and s/C=0.1458, the twist curva-

ture for the quasi-isotropic laminate has a minimum value of -0.3920 located at x/L=0.4678 and

s/C=0.1458, and the twist curvature for the axially-stiff laminate hag a minimum value of-0.4285

located at x/L=0.4678 and s/C=O. 1563. Therefore, as the percentage of fibers in the axial direction
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increases,themagnitude of the local minimum value of the twist curvature increases and shifts

toward the side of the cylinder, and as the percentage of fibers in the circumferential direction

increases, the magnitude of the local minimum value of the twist curvature decreases and shifts

toward the clamped boundary. The circumferential curvature does not depend on the degree of

othotropy.
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Figure 4-7. Influence of orthotropy on the twist curvature.
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4.3 Force and Moment Resultants

As seen in fig 4-8, the boundary region for the circumferential force resultant differs

among the circumferentially-stiff, axially-stiff, and quasi-isotropic laminates. At the clamped

boundary, the circumferential force resultant for the quasi-isotropic laminate varies more with the

s coordinate than for the axially-stiff laminate, but it varies less than the circumferential force

resultant for the circumferentially-stifflaminate. Therefore, as the percentage of fibers in the axial

direction increases, the variation with the s coordinate of the circumferential force resultant at the

boundary decreases.
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The circumferential moment resultant, as seen in fig. 4-9, also differs among the circum-

ferentially-stiff, axially-stiff, and quasi-isotropic laminates. The variations with s along x/L=0 and

0.5 are examined for a closer look at these differences. The circumferential moment resultant is

not large in magnitude at the midspan, but there are differences among the orthotropies. The cir-

cumferential moment resultant for the circumferentially-stiff laminate is significantly greater in

magnitude at the side of the cylinder, changes sharply between s/C=0.20 and 0.15, then flattens

out at the crown to a magnitude greater than those for the axially-stiff and quasi-isotropic lami-
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nates. Along the clamped boundary the circumferential moment resultant for the circumferen-

tially-sliff laminate is greater in magnitude at the side and the crown than for the other two

laminates. The axial and twist moment resultants have results similar to the circumferential

moment resultant in that the magnitude at the side and crown, and at the midspan and clamped

boundary depend to some degree on orthotropy.
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As seen in fig. 4-10, in the midspan region the circumferential transverse shear force

resultant is similar for all three orthotropies, namely, almost zero. In the region of the clamped

boundary, however, the variation of the force resultant depends on the orthotropy. Recall that the

axial and circumferential transverse shear force resultants enforce the w°=0 condition at the

boundary of the cylinder, and with the elliptical geometry they are forced to a change sign at the

boundary because the cylinder moves outward at the crown and keel, and inwards at the sides.

The orthotropy affects the degree of the sign reversal of the circumferential transverse shear force

resultant at the boundary. Comparatively, the force resultant for the axially-stiff laminate varies

least with the s coordinate at the boundary and that for the circumferentially-stiff varies most. In

general, the percentage of fibers in the axial direction controls the degree of the sign reversal of

the circumferential transverse shear force resultant at the boundary.
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Figure 4-10. Influence of orthotropy on the circumferential transverse shear

force resuitlmt, Q,.

As seen in fig. 4-11, in the midspan region the axial transverse shear force resultant is sim-

ilar for all orthotropies, being close to zero there in all cases, but in the clamped boundary region

the variation of the force resultant depends on the orthotropy. Again the boundary conditions on

w° combined with the elliptical geometry force a change of sign in the force resultant, the location

of this sign change depending on the orthotropy. Furthermore in the side region of the cylinder,

the force resultant for the circumferentially-stiff laminate is greatest in magnitude and that for the
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axially-stiff laminateis smallestin magnitude.In the crown region of the cylinder, this trend

reverses. The force resultant for the circumferentially-stiff laminate is smallest in magnitude and

that for the axially-stiff laminate is greatest.
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Figure 4-11. Influence of orthotropy on the axial transverse shear force resultant, Qx.

As seen in fig. 4-12, in the midspan region the circumferential transverse force resultant is

similar for all orthotropies, but in the boundary region of the cylinder it varies. The orthotropy

affects the location of the sign reversal and the peak-to-peak variations of the circumferential

transverse force resultant at the boundary. In general, as the percentage of fibers along the axial
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direction increases, the variation of the circumferential transverse force resultant with the s coor-

dinate decreases at the boundary.
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Influence of orthotropy on the circumferential transverse force resultant, V,.

As seen in fig. 4-13, in the midspan region the axial transverse force resultant is similar for

all orthotropies, being very close to zero, but in the boundary region it varies, depending on the

orthotropy. Again, the boundary conditions on w ° and the elliptical geometry force a change of

sign in the axial transverse force resultant at the boundary. The orthotropy affects the location of

the sign reversal and the peak-to-peak variation of the axial transverse force resultant at the
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boundary. In the side region of the cylinder, the force resultant for the circumferentially-stifflam-

inate is greatest in magnitude, and for the axially-stiff laminate it is smallest in magnitude. In the

crown region of the cylinder, these characteristics reverse such that the force resultant for the cir-

cumferentially-stifflaminate is smallest in magnitude, and for the axially-stifflaminate it is great-

est in magnitude.
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4.4 Summary of the Effects of Orthotropy

The effects of orthotropy seen in this section included several key issues. The axially-stiff,

circumferentially-stiff, and quasi-isotropic laminates resulted in an overall difference in magni-

tude for the axial, circumferential, and normal displacements. In fact, the axially-stiff elliptical

cylinder evaluated using nonlinear analysis contracts axially in response to internal pressure,

whereas, for the other two cases there is axial extension. For some responses, orthotropy mitigates

the effect of ellipticity. For example, the circumferential strain behaves like that of a circular cyl-

inder in the midspan region of the circumferentially-stiff laminate. For the axially-stiff laminate,

the axial strain displays less spatial variation with both x and s compared to the axial strains for

the circumferentially-stiff and quasi-isotropic laminates. The variation with s at the clamped

boundary of the axial curvature, the circumferential force and moment resultants, and the trans-

verse force resultants depends significantly on orthotropy. Compared to the circumferentially-stiff

and quasi-isotropic laminates, for these responses the axially-stiff laminate does not generally

exhibit as much variation with s.

This chapter has presented a through discussion of the character of the response to internal

pressure of elliptical cylinders with three different levels of orthotropy. A complete catalogue of

all the geometrically nonlinear responses of the three cylinders is presented in Appendix A, along

with a comparison of the responses as predicted by the finite element code STAGS [6]. The latter

comparison is for the purpose of verifying the present analysis. As noted in Appendix A, by the

nature of finite element analysis, many of the important responses are not computed exactly at the

ends of the cylinder, the location where many responses assume a maximum or minimum value.

For this reason there appears to be a lack of agreement between STAGS predictions and the pre-

dictions of the present analysis near the ends of the cylinder. This issue becomes important when

69 Effect of OrthoCopy on Cylinder Response



failure is studied, as it is in the next chapter. Whereas the present analysis may predict failure to

occur at the exact ends of the cylinder due to a certain pressure level, STAGS would predict fail-

ure to occur slightly inwards of the ends at a different pressure level. However, STAGS is not used

here to study failure so the issue never arises.

Also by way of a catalogue, Appendix B provides a listing of the axial displacement z_ for

each of the cases discussed here. Recall, A is determined by eq. 1.4.
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Chapter 5 Failure Analysis

In the past several chapters the influences of geometry and orthotropy on the responses of

elliptical and circular cylinders constructed with quasi-isotropic, axially-stiff, and circumferen-

tially-stiff laminates have been evaluated. Both geometrically linear and nonlinear analyses have

been used. In this chapter, an evaluation of failure using the maximum stress and Hashin [7] fail-

ure criteria is presented for elliptical cylinders by considering geometrically linear and nonlinear

analyses and quasi-isotropic, axially-stiff, and circumferentially-stiff laminates. The failure crite-

ria are used to assess the mode of failure (e.g., tensile or compressive fiber or matrix modes), the

location of failure, and the pressure at failure.

5.1 Failure Criteria

The maximum stress and Hashin failure criteria are three-dimensional theories that are

based on one-dimensional uniaxial and shear failure stresses. The one-dimensional failure stresses

are denoted as follows:

+

crA = tensile failure stress in the fiber direction

cr_ = compressive failure stress in the fiber direction (absolute value)

+

crr = tensile failure stress transverse to the fiber direction

cr_ = compressive failure stress transverse to the fiber direction (absolute value)

_r = transverse failure shear stress

rA = axial failure shear stress

For graphite-epoxy typical values of the failure stresses are [2]:
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+

0.A = 200, 000 psi

0.A = 180, 000 psi

+

0.r = 7250 psi (5.1)

0.T = 29, 000 psi

rA = 14, 500 psi

r r = 14, 500 psi

The maximum stress and I-Iashin failure criteria are linear and quadratic in the stresses,

respectively. For the maximum stress criterion, failure is assumed to occur when any one of the

stresses in the principal material coordinate system equals the respective failure stress level. For

the Hashin criterion, the stresses in the principal material coordinate system and the failure

stresses are combined quadratically to form a number of expressions and the material is assumed

to fail when any one of the expressions terms reaches unity. Alternatively, the maximum stress

criterion can be formatted so that failure is assumed to occur when the ratio of any one of the

stresses in the principal material system divided by the respective failure stress level reaches

unity. Therefore, these two criteria can be put on a somewhat similar basis.

5.I.I Maximum Stress Theory

For the maximum stress criterion, there are three modes of failure: tensile, compressive,

and shear. There is assumed to be no interaction between modes of failure or between the stresses

in principal material coordinate system. For example, tensile failure occurs when either 0.11 or 0.22

reaches the respective failure value, but 0"22 doesn't interact with 0"11to cause tensile failure, say,

when both are 90% of their failure value. The shear failure mode is independent of sign, such that

a negative or a positive shear stress is equally capable of causing shear failure. The failure modes

of the maximum stress theory are denoted as follows:
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Tensile Modes (0011,a22 > 0):

+ +

0011< 00A 0°22< cYT (5.2)

Compressive Modes (0011,o'22< 0):

Shear Modes:

-0011< _ -0022< _ (5.3)

100-1< 100-1< 100, <

For the purpose of computation, the following is a more convenient form for the maximum stress

criterion:

Tensile Modes (0011,o'22> 0):

Compressive Modes (o-11, 0022< 0):

001_2<1 _--_-_< 1
4- 4-

00A O'T

(5.5)

-00H < 1 -0022_<l (5.6)

Shear Modes:

_L_<I I°l_[ < 1 _-_<1

rT r_ r_
(5.7)

With this form of the failure criterion, the cylinder is assumed to be safe from failure if all seven

of the lef_ hand sides ofeqs. 5.5-5.7 are less than unity, and failure is assumed to occur when any

one of the seven left hand sides equals unity.

5.1.2 Hashin Theory

For the Hashin criterion, there are four modes of failure: tensile fiber, compressive fiber,

tensile matrix, and compressive matrix. The Hashin theory is written in terms of quadratic stress
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polynomials such that the interaction between the stresses represents an average stress state. The

four modes of the Hashin criterion are denoted as follows:

Tensile Fiber Mode: o.n > 0

0."t2+ _3)<1

o-11<0Compressive Fiber Mode:

Tensile Matrix Mode: (o.;; + o._a) > 0

Compressive Matrix Mode: (o.22 + o._3) < 0

(5.8)

(5,9)

(5.io)

However, since o.3s is assumed to be negligible for the present analysis of the elliptical cylinders,

the Hashin failure criterion simplifies as follows:

Tensile Fiber Mode: o.sl > 0

o.n) 27], + 4,+4,><,

Compressive Fiber Mode: o.H < 0

Tensile Matrix Mode: o.22 > 0

(5.12)

(5.13)
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Compressive Matrix Mode: o'22 < 0

1 + + -_ (00_2+ 0013)< 1 (5.15)

Hence, the cylinder is assumed to be safe from failure when all four left hand sides of eqs.

5.12-5.15 are less than unity, and failure is assumed to have occurred when any one of the four left

hand sides equals unity.

5.2 Determination of Stresses

In order to make use of either failure criterion, computation of the inplane and intertami-

nar shear stresses in the principal material coordinate system, which is shown in fig 5-1, are nec-

essary. Note the coordinate _3 coincides with the through-thickness coordinate _ where 6"varies

from -H/2 _<_'_¢I-I/2 and is zero at the wall midsurfaee, or reference surface. The normal and shear

stresses in the (_1,_2) plane (001, °'2, 0012) are termed inplane stresses. The shear stresses trans-
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verse, or perpendicular, to the (_1,_:2) plane (0.13, 0.23) are called interlaminar stresses. (Actually

due to the complementary nature of shear stresses, o-13 and o'23 also act parallel to the 1-2 plane)

f

_2

Figure 5-1. Inplane and interlaminar stresses in principal material direction.

5.2.1 Inplane Stresses

The inplane stresses can be written in terms of reference surface strains and curvatures,

which are, as seen in previous chapters, a direct result of the semi-analytical solution. These

stresses vary through the thickness of the cylinder wall and the inplane stresses in the/_ layer are

given by

0.x k I_.11__.12 _161 i6xl I_11_.1 2 k

0 0

0

0 0

(5.16)

where [Q0.]/r is the transformed reduced stiffness matrix of the k°' layer, and eq. 1.6 has been

employed to compute the swains in the k t* layer. The stresses in principal material coordinate sys-

tem can be obtained by transformation, namely
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F l. co, o 2co,o:,no 
-cos O:in Ok cos O:in Ok( cos_Ok- sin_O;. rx

where Ok is the fiber angle of the kth layer with respect to the axial direction ofth© cylinder.

(5._7)

5.2.2 Interlaminar Stresses

For the geometrically linear case, the intedaminar stresses in the layers, rrs and rrx, can be

evaluated by using the equilibrium equations of linear elasticity written in a cylinder coordinate

system, namely,

0_, Or,, 0,:,, or,- o,__+_+_+ -0
Or Os Ox r

a_
+

Os

+

Ox

where the r, x, and s coordinates are

Or,, Or_, 2_r =+_ + 0 (5.18)
c_r t3x r "J

__ +__ +lrrx--O,
Or Os r

shown in detail in fig. 5-2. In fig. 5-2 both r-s and r-x cylinder

wall cross sections are shown. The radius of curvature of an arbitrary point within the wall is r

and, recall, the radius of curvature of the wall midsufface is R(s). (The equilibrium equations of

linear elasticity are used because, as will be shown, the contributions of the interlaminar stresses

to either failure criteria considered are quite small. R therefore was concluded that the intedami-

nar stresses were not causing failure. The nonlinear equations of equilibrium are very complex
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and could not be treated in the manner of the section to follow to compute rrj and rr_as a function

oft.)

¢

r R(s)
x

Figure 5-2. Geometry of a section of the cylinder wall.

In order to determine r_ eq. 5.18c is rewritten as follows:

Defining

it follows that

+ .... (5.19)
Or r ,x r Or "_ Os /

r = R($) + _', (5.20)

so eq. 5.19 becomes

0 0
= (5.21)

2--:(R($)+ O_.1= -_-°_+_")(R($)+O. (5.22)

Before _--_(R(s)+ Oz'rx]can be integratedwithrespectto(to obtainrvx,crx and r._need tobe

writtenexplicitlyintermsof_,namely,from eq.5.16,as

0 _ 0 8 R

-- 0 _ 0 -- 0 0 8 K

rxs = Q16(e_ + _c °) + Q26(e, + _c_) + Qed(Y,_ + _%,) = rx,+ _%,

(5.23)
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where,

s ----. -- o..{_ _, o_rx Qnex _z:, + 0.1¢:,
IC _ 0 _ 0

_x = Qu_, + Q12x,+ O_ex°, <5.24)
G _ 0 _ 0

_xa = Q16ex + Q26 e' + 06_:s

K q 0 _ 0
_, = 016_°+ Q2::, + Q_x_,.

Within a layer these quantifies do not vary with the thickness coordinate, (. Equation 5.22 can

now be written as,

" t(R(s) + = + _: + + (R(s) + 0
Ox -O;

l l,O_ t,o,:

Equation 5.25 can be integrated with respect to (to obtain

(5.25)

(R(s) + O_,x = hx(x,S)-lkOx +Os )',

where hx(x, s) is an unknown but to-be-determined function of integration. Dividing eq. 5.26 by

(R(s) + 6")yields

+ _ 0-'S J L (R(-''-'s5 . (5.27)

The terms in square brackets in eq. 5.27 can be simplified. In general, for thin-walled cyl-

inders (is small when compared to R(s). This can be shown as follows:

_._ < CMAX _ 1 (H) _ 1 (0"04951 = 0.0101 ,, 1 (5.28)
Rts) RMI-"_ 2; _ 2(0(7)2\ 5"--"--J

where the numbers for a nine-layer elliptical cylinder have been used. Therefore,
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Thus, for example, the denominator of the terms in eq. 5.27 are

(5.29)

(R(s) + O = R(s)(l +R_(s_ _R(s).

Using similar arguments on other terms in eq. 5.27, it is concluded that

(5.30)

(R(s) +

(R(s)+ 0

Therefore, eq. 5.27 can be reduced to

1 _ 1. (5.31)
(R(s)+ 0

R(s) [_,Ox _ ) _,ox Os )

= hx(x,s)-{fx(x,s)_+gx(x , s) 2_ },

(5.32)

wherefx(x,s) and g,/x,s) are known for each layer at a given value ofx and s. The unknown rune-

tion of integration term has been redefined to be hx(x,s). The function hxOO(x,s) for the k th layer

can be determined by utilizing the condition that

and the continuity condition

.(k-I) _(k)
r,x = _,x. (5.34)

where k denotes the layer number. These conditions translate into, respectively,

(5.35)

or

80 Failure Analysis



and

4,. _i)(_, _._,,_t.-_)j',.,,..,:,-- , (_:-)-,--,,-x=.1:..,,21 (5.36)

or

- - . (#-1)(xh_k l>(x,s)- 1)(x,s)_:k+g.; ,, ,s) =

(5.37)

2

h(_k)(x, s) = h(_k- ') (x, s)+ (/(xk)(x, s)-4 k- ')(x, s))_k + (g(k) (x, s) - g (k- 1)(x, s))_-_-. (5.38)

for k = 2, 3, ..., n, where n is the total number of layers. The quantity _'k is the interracial location

between the k _ and (k-l) st layers.

In order to determine z-rs, eq. 5.18b is rewritten as follows:

OrO"' 2r _IO 2 I _O_s O,=s)_(r ft.) = + . (5.39)

Using eq.5.20 and eq. 5.21,eq.5.39becomes

O----[(R(s) + O2 l-,,] = -_--_s+_xa)(R(s)+_) 2 (5.40)

Before _---:(R(s)+ _)2,',s]can be integratedwith respectto _'toobtain,-,,o"sneeds to be written

explicitlyin terms of (,,namely, from eq. 5.16,as

0 _ 0 0 g K

O's "= Qi2(6x + _i¢:)+ Q22(£, + _K-,) + Q26(,_ °' + _K'°,) -- 0"8 +_0" s (5.41)

where,
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g _ 0 -- 0+Q2:, _.zs:,u, = Ql:x +
K

(5.42)

Within a layer these quantifies do not vary with the thickness coordinate, _'. Equation 5.40 can

now be written u,

(R(s) + O2r"l= _,Os + Os ax

= + (R(s) + + LOs ((R(s)

Equation 5,43 can be integrated with respect to _to obtain

(5.43)

(R(s)+02_-,,= _,(x,s)-

i(o + + + +
lLOx os ). COx os ).z

where ti,(x, s) is another function of integration. Dividing eq. 5.44 by (R(s) + b')e yields

, (5.44)

h,(x, s)
lrrs-

(R(s) + 0 2

The terms in square brackets in eq. 5.45 can be simplified due to eq. 5.29. The numerator

term in the first square bracket in ¢q. 5.45 can be written as follows:

I_£_
R(s)

(5.46)

so
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R2(s) + Cn(s) + 3_2)¢

(n(_) + 0 2

Similarly

(R(s) + g):

Therefore, eq. 5.45 can be reduced to

(5.47)

(5.48)

'_'r$ --

(R(_)+ ¢)_ lt, o,< +o_ ) t,ax _ J 2S

h,(x,s)-{f,(_, s)¢+ g,(,_,s)_}

(s.49)

wherefs(x,s) and gs(X,s) are known for each layer at a given value ofx and s. The unknown func-

tion of integration term has been redefined to be hs(x,s). The function hs(k)(x,s) can be determined

utilizing the condition that

H
1;rs = 0 at E, =-_- (1) H)i.e.,l-,_. =Oat_=- (s.so)

and the continuity condition,

r(st- l) _(t) (5.51)= "fr$ s

where k denotes the layer number. These conditions translate into, respectively,

{/, }_(l) = h(,1)(x, s)- ')(x, s)(--_2 + g(,i)(x, 1 i_s = 0 (5.52)

or

(5.53)
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and

Or

sKk+g k- )(x,s) =

.(k). k)(x"s)_k+

(5.54)

2

h(sk)(x, s) = h(sk-')(x, s)+ (](sk)(x, s)-Jtsk-')(x, s))_k + (g(sk)(x, s)-g(s k- 1)(x, s))-_-, (5.55)

fork = 2, 3, ..., n.

The intedaminar stresses in principal material coordinate system can be obtained by trans-

formation, namely,

to,,7 Ej'k = [cosOk -sinO r,, . (5.56)

LO- sl  o,o,=,
It should be noted that the schemes just described for computing the interlaminar stresses

do not allow for enforcement of the conditions that the intertaminar shear stresses must be zero at

the outer radial location, just as they are at the inner radial location. That is, the conditions

r_) _(n) +H (5.57)= rrs = Oat_: 2

cannot be explicitly enforced as there are not enough functions of integration hx(k)(x,s) and

hs(k)(x,s) to allow enforcement. There is, therefore, no $uarantee that the conditions of eq. 5.57

will be satisfied. As will be seen, they are not exactly satisfied.
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5.3 Character of Interlaminar Stresses

The interlaminar stresses for aluminum and composite circular and elliptical internally

pressurized cylinders are illustrated in figs. 5-3 - 5-6 to convey the character of the distribution

through the thickness, and to provide some insight into the magnitude of these stresses. These

stresses, Z'rxand r,s, or in alternate notation _'_ and rs_ are compared at the axial and circumferen-

tial locations where the magnitudes of the transverse shear force resultants, Qx and Qs, given by

eq. 2.7, are maximum. Generally that location is x/L=0.5 and _C=O with the exception of the alu-

minum elliptical cylinder, where the location is x/L=0.5 and s/C=O. 15625. These locations are at

the end of the cylinder where the condition w=O is enforced. A review of fig. 2-7, for example,

shows the character of Q"-xand Q-'sfor both circular and elliptical cylinders. Of course the circular

cylinder is axisymmetric so the location s/C=0 is not unique.

For the aluminum circular cylinder, fig. 5-3, there is no interlaminar stress _',_.Note that at

_=+H/2, the shear stress xrx is not quite zero. As just mentioned, this is due to the lack of enough

unknown functions of integration to uniquely specify the shear stress at both _=+H/2 and _=-H/2.
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Figure 5-3. Interlaminar shear stresses for an aluminum circular and elliptical cylinders,

po=100 psi, x/L=0.5, s/C=0.0, except for rrs for the elliptical cylinder where

s/C=0.15625

For the quasi-isotropic cylinder, and the other composite cases, the distributions of the

shear stresses are piecewise parabolic, as can be seen from the form of eqs. 5.32 and 5.49. The

intedaminar stress _rx is larger than interlaminar shear stress Xrs and it generally peaks at or near

4=0. The intedaminar shear stress _ generally peaks between the +45 ° and -45 ° layers and has a

lower value near 4=0. Note that xrx is not zero at 4=+H/2 and this is felt to be responsible for the

lack of symmetry, with respect to 4=0, of the distribution of the interlaminar shear stresses.
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Figure 5-4. Interlaminar shear stresses for a quasi-isotropic circular and
elliptical cylinders, po=100 psi, x/L=0__, siC=0.0

C

0.02475

0.01925

0.01375

O.OOS_

0.00275

-0.0(_275

-0.00_5

-0.01375

-0.01g_5

-0.02475
-1800-1500-1200 -gO0 4100

rrx and trj

Circular

_ 'v _' -

Elliptical

O.n'J475

0.011125

O.01375

0.00825

0.0m75

-0.00_/5

.0.00825

-0.01375

-0.01_5 -

-0.m475
.2500-300 0 -2000 -1500 -1000 -500 0

_and_

Figure 5-5. Interlaminar shear stresses for an axially-stiff circular and elliptical cylinders,
po=100 psi, x/L=0.5, s/C--0.0
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Figure 5-6. Interlaminar shear stresses for a circumferentially-stiff circular and

elliptical cylinders, po=lO0 psi, x/L=O.5, s/C=O.O

5.4 Interlaminar Shear Stress Validation

As a check on the interlaminar stress calculations, the integrals of the interlarninar stresses

given by eq. 2.7 were compared with the transverse shear stress resultants, Qx and Qs, as given by

the derivatives of the moments in eq. 2.6. Table 5-1 shows the comparison for the condition of

maximum Qx and the maximum Qs. In the table the values have been normalized by the quantity

poR, as has been done earlier, and the x and s location of the maximum value are indicated, along

with the percent error in the integral calculations.

The aluminum circular cylinder does not have a circumferential transverse shear force

resultant and the circumferential interlaminar shear stress integrated through the thickness reflects

zero response. The integrated axial intedaminar shear stress compared with the axial transverse

shear force resultant gives a small error of 3.2%. The aluminum elliptical cylinder shows similar
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results for _rxd_ and Q_, but _:r,d_ and Qj show a slightly larger error of 7.1%. The compos-

ite cylinders also resulted in small differences between the transverse shear force resultants and

the integrated interlaminar shear stress. The average error between f_rxd_'and Qx is 3.5% for the

circular composite cylinder and 2.5% for the elliptical composite cylinder. The average error

between _:rsd( and Q--s for both the circular and elliptical composite cylinders is 0.tYA. These

errors are felt to be minimal.

This chapter has introduced the Hashin and maximum failure criteria, discussed the

approach for computing the inplane stresses, and presented a method for computing the interlami-

nar shear stresses that contribute to the failure criteria. The integral of the interlaminar shear

stresses through the thickness were compared to the transverse shear stress resultant to verify the

derivation of the intedaminar shear stresses. The difference between the integrated interlaminar

shear stresses and the transverse shear stress resultant was considered to be negligible.
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Table 5-1. Linear interlaminar shear stress comparison

Aluminum Quasi-isotropi¢ Axially-stiff

0.06203 0.06035 0.08843

'_..xd _ 0.06402 0.06252 0.09092

% Error 3.2 3.6 2.8

Location (0.5,0.0) (0.5,0.0) (0.5,0.0)
(x/L,s/C)

Us 0 0.01010 0.01084

_vsd_ 0 0.01010 0.01085

% Error 0 0.0 0.0

Location (0.5,0.0) (0.5,0.0) (0.5,0.0)

(x_,s/c)

Qx 0.11291 0.11104 0.12662

?rxd_ 0.11564 0.11406 0.12921

% Error 2.4 2.7 2.0

-a Location (0.5,o.o) (0.5,0.0) (0.5,0.0)

_, 0.00820 0.01894 0.01593

_.rsd_ 0.00878 0.01895 0.01593

% Error 7.1 0.0 0.0

Location (0.5,0.15625) (0.5,0.0) (0.5,0.0)

(x._,s/c)

Cirmunferen-

tially-stiff

0.05050

0.05247

3.9

(0.5,0.0)

0.00970

0.00970

0.0

(0.5,0.0)

0.10889

0.11216

3.0

(0.5,0.0)

0.02138

0.02140

0.0

(0.5,0.0)
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Chapter 6 Failure Predictions

Utilizing the approaches for computing the inplane and interlaminar shear stresses dis-

cussed in the previous chapter, this chapter will present a discussion of failure of internally pres-

surized elliptical cylinders. The Hashin and maximum stress failure criteria and geometrically

linear and nonlinear analyses will be considered to predict the location and mode of failure.

6.1 Failure Predictions for the Geometrically Linear Theory

The I-Iashin and maximum stress failure criteria were implemented in a FORTRAN code

using the stresses obtained for the geometrically linear analysis. The FORTRAN code computed

the stresses in the principal material coordinate system at an internal pressure of 100 psi, then

combined them as prescribed in eqs. 5.5-5.7 for the maximum stress criterion and eqs. 5.12-5.15

for the Hashin criterion. For the maximum stress criterion, the seven left-hand sides in the crite-

rion were then computed as a function of axial, circumferential, and through-thickness location.

The left-hand side that was the maximum was then singled out. For all cylinders, the maximum

lef_-hand side value was below unity, which implied that for an internal pressure of 100 psi failure

had not yet occurred. An internal pressure at which each cylinder would begin to fail, or the fail-

ure pressure, was predicted by linearly extrapolating, namely, multiplying the maximum left-hand

side of the equation by a variablep_ such that,

(LHSmax)pf ffi 1. (6.1)

It follows, then, that the failure pressure was given by
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1
Pf - LHSmax Po " (6.2)

where Po is 100 psi. The particular left-hand side which was maximum identified the failure

mode.

For the Hashin criterion, the four left-hand sides in the criterion were computed as a func-

tion of axial, circumferential, and through-thickness location. The left-hand side that was the

maximum was then singled out. Again, for all cylinders the maximum left-hand side value was

below unity. For the tensile modes of failure, the failure pressure was predicted by linearly extrap-

olating namely, multiplying the maximum left-hand side of the equation by the square of a vail-

ablep: such that,

(f_ff-fSmax)P _ ---- |.

It follows, then, that the failure pressure was given by

P/= Po,
IIX

(6.3)

(6.4)

wherepo is 100 psi. In the case of compressive matrix failure, failure pressure was determined by

=O.If , then the failure pressure was determined by

where

P./'=ITb+_lPo

a = _'2:'T: " _'T" _'A

(6.5)

(6.6)
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For compressive fiber failure, eq. 6.2 was applied. The particular lefbhand side which was maxi-

mum identified the failure mode.

Table 6-1 shows the failure pressure and location for axially-stiff, quasi-isotropic, circum-

ferentially-stiff elliptical cylinders as predicted by the Hashin criterion. Recall, the axially-stiff

and circumferentially-stiff cylinders are nine layers thick and have a total thickness ofH=0.0495

in., and the quasi-isotropic cylinder is eight layers with a total thickness H=0.044 in. The location

of failure through the thickness is specified both by indicating the value of the 6"coordinate, and

by indicating the layer number and interface number for that layer. The footnote in the table

explains the layer and interface numbering scheme. The circumferential location is denoted by the

value of s/C. Also shown in table 6-1 are the values of the stress components at the location of

failure when the pressure equals the failure pressure. Note that in each case failure occurs at the

ends of the cylinders. This is due to effects associated with the clamped end conditions. It is

important to realize that there are two ends of the cylinder and the s/C location noted is the crown

location. There is a companion circumferential location in the keel where the failure conditions

are satisfied at exactly the same pressure. As can be seen, in all cases 0.2 is generally close to the

failure level of 7250 psi at the failure pressure (see eq. 5.1). In each case failure is attributed

mainly to tension in the matrix, or 0"2. For the quasi-isotropic and axially-stiff laminates failure

occurs at the inner radius and thus the interlaminar shear stresses do not contribute to failure of

these cylinders. As failure occurs in layer seven of the circumferentially-stiff laminate, near the

outer radius, the interlaminar shear stresses could contribute to the failure, but, in fact, are an

order of magnitude less than inplane stress 0"2, and therefore have little bearing on the failure pre-

dictions. In general, the intedaminar shear stresses are always an order of magnitude less than the

inplane stresses. Therefore, the intedaminar shear stresses can be computed from the geometri-
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cally linear equilibrium equations, as has been done in the preceding sections, with little effect on

the failure predictions for the geometrically nonlinear theory. Note that for the circumferen-

tially-stiff laminate failure occurs exactly at the two side locations, s/C=:L-0.25, simultaneously.

Table 6-1. Failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically linear analysis, Hashin failure criterion

Axially-stiff

Quasi-

isotropic

Circumfer-

entiaily-stiff

p/
(psi)

130.4

130.9

106.7

loc*

1/1

(+45)

1/1

(+45)

7/2

(9O)

-0.0248

-0.0220

0.0138

s/C**

-0.07

-0.07

i-0.25

Ol

(psi)

16200

13200

2180

02

(psi)

6980

699O

7250

"C12

(psi)

-3950

-3880

-4.28

"C13 "[23

(psi) (psi)

0 0

0 0

82.5 -663

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C---_.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

As a comparison to the Hashin criterion, table 6-2 shows the failure pressure and location

for the three elliptical cylinders as predicted by the maximum stress criterion. Again the failure

mode is predicted to be due to 0.2 at the ends of the cylinders. The table shows the values of the

stresses at the location of failure when the pressure equals the failure pressure. Note that 0"2 equals

its failure value (see eq. 5.1). Any deviation from an exact 0"2=7250 psi is due to round off and

other numerical anomalies that result from all the algorithms involved in the calculations. By

comparing tables 6-1 and 6-2 it is seen that the Hashin and maximum stress criteria both predict

similar scenarios, namely failure due to matrix cracking caused by high values of 0.2 at very simi-

lar, if not identical, locations.
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Table 6-2. Failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically linear analysis, maximum stress failure criterion

Axially-stiff

Quasi-

isotropic

pf loc*

(psi)

135.6 1/1

(+45)

135.6 1/1

(+45)

106.8 7/2

(90)
Circumfer-

entially-stiff

s/C** o I t_ 2 "C12

(psi) (psi) (psi)

-0.0248 -0.07 16800 7260 -4110

-0.0220 -0.08 6790 7260 -3840

0.0138 i-0.25 2180 7250 -4.28

_13 _23

(psi) (psi)

0 0

0 0

82.6 -663

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=O is crown, s/C=-_.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

Since all the failures in table 6-1 and 6-2 are matrix cracking failures, these can be consid-

ered first ply, or initial, failures. Catastrophic failure of the cylinder is not expected. Increased

pressure capacity beyond the pressure levels in the tables is highly likely. However, when fibers

begin to fail, failure of the cylinder is more likely. Failure of fibers in tension will lead to

increased tension in the surrounding fibers. Failure of fibers in compression could lead to crush-

ing and deterioration of the material in the surrounding region. For either situation, there could be

a sudden cascading effect which would lead to catastrophic failure. Because of this, the pressures

required to produce first fiber failure were computed. Table 6-3 and 6-4 show these pressures.

These pressures were computed by ignoring all failures except fiber failure. For the Hashin crite-

rion, this means either eq. 5.12 or 5.13 governs failure, while for the maximum stress criterion,

this means the first of either eq. 5.5 or 5.6 governs. First fiber failures are predicted to be fiber

compression failure in all cases. The location is again at the ends of the cylinders. Fiber crushing

is predicted to occur at the outer radius, due to high bending effects. The predicted fiber failure

Failure Predictions 95



pressures are about twice as high as the predicted matrix cracking pressures. The Hashin and max-

imum stress criteria predict identical results because for the fiber compression failure mode, the

Hashin criterion (eq. 5.13) and the maximum stress condition (the first of eq. 5.6) are identical

equations. It is interesting to note that at the locations where the fibers fail by compression, the

matrix is also in compression and near or beyond its failure level and the shear stress r12 is more

than one-half its failure level. Interlaminar stress does not play a role because of their small mag-

nitudes.

A comment is in order regarding failure due to internal pressure. By the nature of pressure,

a matrix crack in the inner layer will allow the pressure to reach the faces of the crack and perhaps

force them apart further than if, for example, a bladder was used inside the cylinder to contain the

pressure. In fact with a crack in the first layer and no bladder, the pressure reaches the second

layer from within. This pressure could act to separate the second layer from the inner layer. With a

bladder this would not happen, since the mechanics of force equilibrium around the crack would

be different with a bladder, the bladder still reacting to the pressure force despite the matrix crack.

It is not clear what the first matrix crack means in the presence of a bladder when compared to the

case of no bladder. It is felt that with no bladder the first matrix crack has the potential for trigger-

ing failure, whereas with a bladder it is felt the first matrix crack could well be inconsequential.
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Table6-3. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically linear analysis, Hashin failure criterion

Axially-stiff

pf log*

(psi)

242.1

Quasi- 228.8

isotropic

Circumfer- 227.5

entially-stiff

9/2

(+45)

8/2

(+45)

9/2

(+45)

y/C** 01 02 _12

(psi) (psi) (psi)

0.0248 -0.08 - 180000 -5860 7800

0.0220 -0.07 -180000 -7070 8400

0.0248 -0.06 -180000 -8710 9240

%13 "_23

(psi) (psi)

-91.0 81.3

-112 95.9

-109 91.7

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: y/C=0 is crown, y/C--i-0.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

Table 6-4. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically linear analysis, maximum stress failure criterion

p/
(psi)

Axially-stiff 242.1

Quasi- 228.8

isotropic

Circumfer- 227.5

entially-stiff

log*

9/2

(+45)

8/2

(+45)

9/2

(+45)

Y/C** 01 0 2

(psi) (psi)

0.0248 -0.08 -180000 -5860

0.0220 -0.07 -180000 -7070

0.0248 -0.06 -180000 -8710

_12 "f13 Z23

(psi) (psi) (psi)

7800 -91.0 81.3

8400 -112 95.9

9240 -109 91.7

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: y/C=0 is crown, y/C=i-0.25 are sides,

C=circumference, _arclength measure (see fig. 1-2)

It was seen in chapter 3 that geometric nonlinearities have an influence on the response of

elliptical cylinders subjected to internal pressure. An important issue is how the inclusion of geo-
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metric nonlinearities influences the predictions of failure. To that end, the next section addresses

the prediction of failure when geometricaily nonlinear analyses are used.

6.2 Failure Predictions from the Geometrically Nonlinear Theory

To compute the failure pressure using the geometrically nonlinear analysis, iteration must

be used, each iteration using a different internal pressure. The first step in the iteration process fol-

lows the failure analysis for the geometrically linear case, namely, the analysis is conducted for a

pressure Of Po=lO0 psi. Then, considering the maximum stress criterion as an example, the seven

left-hand sides of the failure criterion are computed, and usingpo=lO0 psi the failure pressure is

computed using eq. 6.2. The geometrically nonlinear analysis is then conducted using this pre-

dicted failure pressure, i.e., nowpo is the failure pressure predicted from the first step. The seven

left-hand sides are again computed and eq. 6.2 is used to compute a new failure pressure. If this

failure pressure prediction is within 10°A of the first iteration's failure pressure prediction, the iter-

ation process is considered converged. If the second failure pressure prediction is not with 10°A of

the first prediction, the geometrically nonlinear analysis is repeated using the second failure pres-

sure prediction as Po and the failure predictions made again using eq. 6.2. A similar iteration pro-

cedure is used for the Hashin criterion based on eq. 6.2, 6.4, or 6.5 and the four left-hand sides in

that criterion.

Tables 6-5 through 6-8 represent the geometrically nonlinear case counterpart to tables 6-1

through 6-4, which were computed using geometrically linear analysis. Table 6-5 shows the fail-

ure pressure and location for axially-stiff, quasi-isotropic, and ¢ircumferentially-stiff elliptical

cylinders as predicted by the H_ashin failure criterion. Also shown are the values of the stress com-

ponents at the location of failure when the pressure equals the failure pressure. Note that in each
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case failure occurs at the ends of the cylinders. As can be seen, in all cases 0-2 is generally near the

failure level of 7250 psi at the failure pressure and, therefore, in each case failure is attributed

mainly to tension in the matrix, or 0-2- For the quasi-isotropic and axially-stiff laminates failure

occurs at the inner radius and thus again the interlaminar shear stresses do not contribute to this

failure of the cylinder. As failure occurs in layer seven of the circumferentially-stifflaminate, near

the outer radius, the interlaminar shear stresses could contribute to the initial failure, but, in fact,

are an order of magnitude less than inplane stress 0-2, and therefore again have little beating on the

failure predictions. Comparing tables 6-1 and 6-5, it is seen than nonlinearities are predicted to

have minimal influence on the failure predictions. The failure pressure levels for the axially-stiff

and quasi-isotropic cylinders are predicted to be slightly greater for the nonlinear analysis, and the

s/C locations of failure are predicted to be somewhat farther away from the crown, i.e., the s/C=0

location. On the other hand, compared to the geometrically linear case, the geometrically nonlin-

ear analysis for the circumferentiaily-stiff case predicts a slightly lower failure pressure but the

same s/C location.
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Table 6-5. Failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically nonlinear analysis, Hashin failure criterion

Axially-stiff

Quasi-

isotropic

pf
(psi)

135.3

134.1

104.9Circumfer-

entially-stiff

lOC*

1/1

(+45)

1/1

(+45)

7/2

(+9O)

s/C** o I 02 %12

(psi) (psi) (psi)

-0.0248 -0.09 13100 6990 -3870

-0.0220 -0.10 4540 7020 -3650

0.0138 :L-0.25 2170 7230 -6.04

"C13 "f23

(psi) (psi)

0 0

0 0

105 -803

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C--_.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

As a comparison to the Hashin criterion, table 6-6 shows the failure pressure and location

for the three elliptical cylinders as predicted by the maximum stress criterion and the geometri-

cally nonlinear analysis. Again the failure mode is predicted to be due to 0"2 at the ends of the cyl-

inders. The table shows the values of the stresses at the location of failure when the pressure

equals the failure pressure. Note that 0"2 equals its failure value. By comparing tables 6-5 and 6-6

it is seen that the Hashin and maximum stress criteria both predict similar scenarios, namely fail-

ure due to matrix cracking caused by high values of 0.2 at very similar, in not identical, locations.

Furthermore, by comparing tables 6-2 and 6-6, it is seen that according to the maximum stress cri-

terion, geometric nonlinearities predict slightly increased failure pressures for the axially-stiff and

quasi-isotropic cases, with the failures occurring somewhat farther away from the s/C=O location.

For the circumferentially-stiff case, the nonlinear analysis predicts the same s/C location and a

slightly lower failure pressure. This relationship between linear and nonlinear analyses for the
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maximum stress criterion is identical to the relationship between linear and nonlinear analyses for

the Hashin criterion.

Table 6-6. Failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically nonlinear analysis, maximum stress failure criterion

Axially-stif

p/
(psi)

140.3

loc*

1/1

(+45)
-0.0248

s/C**

-0.I0 7990

O2

(psi)

7250

Z12 "_13 "t23

(psi) (psi) (psi)

-3860 0 0

Quasi- 138.6 1/1 -0.0220 -0.I0 4700 7250 -3780 0 0

isotropic (+45)

Circumfer- 105.0 712 0.0138 x'-0.25 2170 7250 -6.05 105 -804

entially-stif. (90)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C--i-O.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

The pressure required to produce first fiber failure for the geometrically nonlinear cases

are shown in tables 6-7 and 6-8. Using the Hashin failure criterion, first fiber failures are pre-

dicted to be fiber compression failure in all cases except for the circumferentially-stiff laminate.

The location is again at the ends of the cylinders. Except for the circumferentially-stiff laminate,

failure is predicted to occur at the outer radius, again due to high bending effects. Note that for

these two cases of high fiber compressive stresses, the matrix is in a high compressive state and

the shear stress r12 is about one-half its failure level. Also for these two cases, compared to the

geometrically linear case of table 6-3, geome_c nonlinearities lead to somewhat higher first fiber

failure pressures, and failure locations further away from s/C=0. The failure pressures for these

two first fiber failure cases are about a factor of two greater than the matrix failure pressures of

table 6-5, as in the linear case.
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The prediction for the first fiber failure for the circumferentiaUy-stiff case in table 6-7 is

quite interesting. The Hashin criterion and the nonlinear analysis predict first fiber failure to be

tensile in the outer layer at the sides of the cylinder, whereas, according to table 6-3, the linear

analysis predicted fiber compressive failure in the outer layer at the crown of the cylinder. For the

nonlinear analysis of table 6-7, both 0"2 and _'m are larger in magnitude than in table 6-3. Since the

Hashin criterion uses a combination of stresses, it appears that the high tensile 0"2 and high values

of 0"2 and r12 for the geometrically nonlinear case combine to produce fiber tensile failure as

opposed to fiber compressive failure, and the location of failure is different. If the variation of cur-

vature with circumferential location at the end of the cylinder, particularly the sign change from

side to crown (see fig. A-15) is examined, it can be seen why the failure in the outer layer could be

tensile in the cylinder sides or compressive in the crown. For the circumferentially-stiff geometri-

cally nonlinear case, in addition to the failure mode changing relative to the linear case, the failure

pressure is higher. Also, the first fiber failure pressure predicted by the nonlinear analysis is, as

has been the case, about a factor of two greater than for the first matrix failure predicted by the

nonlinear analysis.
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Table 6-7. First Fiber failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically nonlinear analysis, Hashin failure criterion

p/
(psi)

Axially-stiff 269.8

Quasi- 260.6

isotropic

248.0Circumfer-

entially-stiff

loc*

9/2 0.0248

(+45)

8/2 0.0220

(+45)

9/2 0.0248

(+45)

s/C**

-0.11

-0.10

0.24

ff l 02 "t12

(psi) (psi) (psi)

-180000 -5070 7400

-180000 -5600 7660

153000 12100 -10187

"C13 "C23

(psi) (psi)

-1590 1580

-1460 1460

-84.9 117

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C---'_.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

As seen in table 6-8, the geometrically nonlinear analysis and the maximum stress crite-

rion predict first fiber failure to be compressive for all three laminates. Compared to the analog

geometrically linear analysis, table 6-4, the predicted failure locations are further away from the

S/C=0 location and the pressure levels are higher. Also compared to the geometrically nonlinear

maximum stress criterion analysis for matrix failure, table 6-6, the first fiber failure pressure for

the axially-stiff and quasi-isotropic laminates are about factor of two higher, for the circumferen-

tially-slifflaminate, the factor is about 2.5.

Failurc Predictions 103



Table 6-8. First Fiber failure pressure and location for elliptical graphite-epoxy cylinders,

geometrically nonlinear anal'¢sis, maximum stress failure criterion

p/
(psi)

Axially-stiff 269.8

Quasi- 260.6

isotropic

266.0Circumfer-

entially-stiff

log*

9/2

(+45)

8/2

(+45)

9/2

(+45)

s/C** o l 02

(psi) (psi)

0.0248 -0.11 -180000 -5070

0.0220 -0.10 -180000 -5600

0.0248 -0.09 -18OOOO

"C12 "C13 "C23

(psi) (psi) (psi)

7400 -1590 1580

7660 -1460 1460

-6380 8060 -877 865

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=!-0.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)

Tables 6-9 and 6-10 summarize the key results just discussed. Table 6-9 shows the failure

pressure, location, and mode of failure for both the Hashin and maximum stress failure criteria for

the cylinders. Results for both linear and nonlinear analysis have been included. As has been dis-

cussed, the differences in failure pressure and location of failure between linear and nonlinear

analysis are quite small. In each case failure is due to tension in the matrix. In a general sense,

both the axially-stiff and quasi-isotropic laminates are predicted to experience the first matrix

crack at around 130-140 psi in the first layer (a +45 ° layer) at the inner radial location at s/C

-0.10. The circumferentially-stiff laminate is predicted to experience the first matrix crack at

around 105 psi in the seventh layer (a 90 ° layer) at the outer radial location at s/C = x_0.25.

Whether failure is due to bending or inplane effect is examined by evaluating the part of the stress

that is contributed by bending effects and comparing it with the part contributed by inplane

effects. The ratio crx/crc is the ratio of these two parts and the table shows that both the axially-stiff

and the quasi-isotropic laminates are predicted to fail due to bending effects. On the other hand,
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the circumferentially-stiff laminate is predicted to fail due to inplane effects. The bending effects

at the end are induced by the conditions of w=0 and _x =0 there, while inplane effects are induced

by the condition v=O there and the inplane stress resultants caused by the internal pressure. Note

that for the axially-stiff and quasi-isotropic cases, geometric nonlinearities reduce bending effects

relative to inplane effects, whereas for the circumferentially-stiff case the reverse is true.

Table 6-9. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,

geometrically linear and nonlinear analyses, two failure criteria

Axially-Stiff Quasi-Isotropic Circumferentially-Stiff

p_ psi

Hashin Max cr Hashin Max o Hashin Max t;

130 136 131 136 107 107

loc* 1/1 (+45) 1/1 (+45) 1/1 (+45) 1/1 (+45) 7/2 (90) 7/2 (90)

-0.0248 -0.0248 -0.0220 -0.0220 0.0138 0.0138

s/C** -0.07 -0.07 -0.07 -0.08 :L-0.25 i'0.25

mode 4"0"2 +02 +02 +02 +02 +02

cr_cr_ 3.3/1 3.3/1 4/1 2.86/1 0.33/1 0.33/1

p_ psi 135 140 134 139 105 105

loc 1/1 (+45) 1/1 (+45) 1/1 (+45) 1/1 (+45) 7/2 (90) 7/2 (90)

_ -0.0248 -0.0248 -0.0220 -0.0220 0.0138 0.0138
s/C** -0.09 -0.10 -0.10 -0.10 _0.25 i-0.25

mode +o 2 +o 2 +0 2 +o2 +o2 +02

o-_/o-_ 2.7/1 2.3/1 2.2/1 2.2/1 0.38/1 0.38/1

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes

the inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=i-0.25 are sides,

C=circumference, s=arclength measure (see fig. 1-2)
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Table 6-10 shows the failure pressure and location of failure for the Hashin failure crite-

rion and examines matrix (as seen in table 6-9) and fiber failure. Results for both linear and non-

linear analysis have been included. The most notable difference between first fiber and matrix

failure is the increase in failure pressure from 105-135 psi to 227-270 psi. This indicates that as

the pressure increases the matrix will fail long before the first fiber failure pressure is reached.

Also, from matrix failure to first fiber failure, the location of failure shiits dramatically from the

inside to the outside of the cylinder for the axially-stiff and quasi-isotropic laminates, and from

the outer 90 ° layer to the outer +45 ° layer for the circumferentially-stiff laminate. OeomeUic non-

linearities have a somewhat stronger influence on first fiber failure pressure as compared to

matrix failure, causing increases in failure pressure around 10%, as opposed to 2% for matrix fail-

ure pressures. Based on the nonlinear analysis, the axially-stiff laminate fibers fail at 270 psi in

the ninth layer, the outer +45 ° layer, on the outer interface at s/C = -0.11. The quasi-isotropic lam-

inate fibers fail at 261 psi in the eighth layer, the outer +45 ° layer, on the outer interface at s/C =

-0.10. The circumferentially-stiff laminate fibers fail at 248 psi in the ninth layer, the outer +45 °

layer, on the outer interface at s/C = 0.24.
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Table 6-10. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,

geometrically linear and nonlinear analyses, two failure modes, Hashin failure criterion

Axially-Stiff Ouasi-Isotropic Circumferentially-Stiff

p: psi

Matrix Fiber Matrix Fiber Matrix Fiber

130 242 131 229 107 227

loc* I/I(+45) 9/2 (+45) I/I (+45) 8/2 (+45)

-0.0248 0.0248

s/C** -0.07 -0.08

mode q-O2 -O 1

or,c/ere 3.3/1 1.25/1

p_ psi 135 270 134 261 105 248

Ioc* 1/1 (+45) 9/2 (+45)

7/2 (90) 9/2 (+45)

-0.0220 0.0220 0.0138 0.0248

-0.07 -0.07 :£-0.25 -0.06

q-o 2 ..o 1 4-02 -o 1

4/1 1.3/1 0.33/1 1.25/1

1/1 (+45) 8/2 (+45) 7/2 (90) 9/2 (+45)

_o _ -0.0248 0.0248 -0.0220 0.0220 0.0138 0.0248

s/C** -0.09 -0.11 -0.10 -0.10 +0.25 0.24

mode +02 -o I +02 "°1 +02 +01

_rx/o'_ 2.7/1 1.2/1 2.2/1 1.2/1 0.38/1 0.59/1

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes
the inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: S/C=O is crown, S/C----_L-0.25are sides,

C=circumference, s=arclength measure (see fig. 1-2)

6.3 An Alternative View of Failure Predictions

With composite materials there is often scatter in the results of tests designed to determine

failure stresses. Considering the failure stress of a composite material to be exactly a certain level

is somewhat unrealistic. The scatter is due to small unpredictable irregularities in the microstruc-

ture of composites and possible anomalies in the manufacturing process. As a result, the location

with the highest stress may not fail first. A slightly lower stress at another location, coupled with a

microstructural irregularity, could lead to lower failure stress levels. To that end, the g¢ometri-
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cally nonlinear failure analysis was used to compute the locations within the ellipse where the

seven left-hand sides in the Hashin failure criterion were within 20°,4 of the failure level, i.e., the

left-hand sides were in the range 0.80 to 1.00, with 1.00 corresponding to the cases discussed in

table 6-5.

Figures 6-1 through 6-3 show the locations of the maximum left-hand side and all values

within 20% of the maximum value for the Hashin failure criterion for the axially-stiff, quasi-iso-

tropic, and circumferentially-stiff laminates. The axially-stiff, quasi-isotropic, and circumferen-

tially-stiff laminates were evaluated using nonlinear analysis at failure pressure, pf In each figure

a greatly distorted view of the crown section of the cylinder wall through the thickness from

-/-//2 _<'_ _'H/2, around the circumference from -0.25 _<'s/C _<'0.25, and at x/L=0.5 provides a

visual display of the points within 20% of failure. Each figure includes a table which lists in

descending order the location of the points, and stresses at those points at the failure pressure.

Figure 6-1 shows all points within 20% of the maximum left-hand side value for the axi-

ally-stiff laminate, which has a thickness, H, of 0.0495 in. As indicated in previous tables, the

maximum left-hand side value, or initial failure point, is located at the first layer, a +45 ° layer, at

the inner radial location of the cylinder at s/C=-0.09. Considering points where the lefbhand side

is less than 1.00, the points are dispersed circumferentially on both sides of the initial failure

point, but remain in the first layer at the inner radial location. Eventually, the points reach to both

sides of the interface between the first and second layers. An alternative interpretation of the spa-

tial distribution of the points is that if the pressure is increased beyond the value to predict failure

at point 1, point 2 will be the next location of failure. Further increases in pressure would lead to

failure at points 3, 4, 5, etc. With this interpretation, then, it is felt that the geometric distribution

of points would represent the progression of damage as the pressure increases beyond the value
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necessary to have the Hashin criteria to equal 1.00. If this is the case, then, matrix cracking will

accumulate in layer 1 at the inner radial location (_=-0.02475) in the range -0.16 _<x/C _'0. There

will also be cracking in layer 2 at the interface between the 1st and 2rid layers (_=-0.01925). All

these failures would be due to high values of 0"2.

IOC

l I/l(+45)

2 i/i(+45)

3 I/I(+45)

4 I/l(+45)

5 i/i(+45)

6 i/I(+4s)

7

8

9

10 1/1 (4-45)

11

12

13 I/1(+45)

14 1/1 (4-45)

15 1/1 (+45)

16 2/1 (-45)

17 2/1 (-45)

Figure 6-1.

0.0_475
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0.01375

0.00825
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-O.(XD75

-0.(X1625

-0.01375

-0.01925

-0.02475

-0.02475

-46

0
!

0

O0

0

0

- " - __-'-_-._-L

, -46

-0.02475

-0.02475

-0.02475

-0.02475

-0.02475

a/C

-0.090

-0.100

-0.080

-0.110

-0.070

-0.060

-0.120I/I(+45) -0.02475

I/I(+45) -0.02475 -0.050

I/I(+45) -0.02475 -0.130

-0.02475 -0.040

1/1 (+45) -0.02475

1/1 (+45) -0.02475

-0.02475

-0.02475

-0.02475

-0.01925

-0,01925

-0.030

-0.140

-0.020

-0.150

-0.010

0.110

0.100

.0.15 -0.06 0.05 0.15

sic

t_ I 0 2

13100 6990

7700 6990

18500 6950

2430 6950

239(10 6870

29300 6770

-2710 6860

34700 6640

-7590 6710

39900 6490

45100 6320

-12100 6490

50100 6120

-1610o 6220

54900 5900

-7030 6050

-2500 6020

O.25

"c12

-3870

-3730

-4OOO

-3570

-4110

-4200

-3380

-428O

-3170

-4340

-4390

-2950

-443O

-270O

-4450

_13

0

0

0

0

0

0

0

0

0

'E23

0

0

0

0

0

0

0

2850 -133 -775

2960 -135 -812

Points within 20% of failure pressure, Hashin criterion, axially-stiff laminate,

nonlinear analysis, x/L-_.5
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18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2/I(-45) -0.01925 0.120 -I1300 6040

2/I(-45) -0.01925 0.090 2210 5940

2/i(-45) -0.01925 0.130 -15300 5980

2740 -132 -728

3050 -135 -841

26OO -129 -671

1/2 (+45) -0.01925 -0.110 -8310 5930 -2770 -954 119

1/2 (+45) -0.01925 -0.100 -3660 5910 -2880 -966 122

1/1 (+45) -0.02475 0.000 59600 5670 -4460 0 0

-938

2/i(-45)

1131/2(+45) -0.01925 -0.120 -12700 5910 -2630

2/1 (-45) -0.01925 0.080 7050 5850 3130 -136 -865

1/2(+45) -0.01925 -0.090 1180 5860 -2990 -972 125

-0.01925 0.140 -18700 5870 2460 -124 -599

-3070 -9751/2 (+45) -0.01925 5780 1276140-0.080

5870 -2440 0 0

5840 -2490 -911 107

5720 3210 -136 -883

-976

1/1 (+45) -0.02475 -0.160 -19600

1/2 (+45) -0.01925 -0.130 -16800

2/1 (-45) -0.01925 0.070 12000

-31505660 1291/2 (+45) -0.01925 -0.070 11100

1/1 (+45) -0.02475 0.010 64200 5420 -4460 0 0

I/2(+45) -0.01925 -0.140 -20300 5720 -2330 -871 I00

2/1(-45) -0.01925 0.060 17000 5580 3270 -136 -899

2/1 (-45) -0.01925 0.150 -21600 5700 2290 -118 -514

Figure 6-1. Points within 20% of failure pressure, Hashin criterion, axially-stiff laminate,
nonlinear analysis, x/L--0.5

Figure 6-2 shows all points within 20% of the maximum left-hand side value for the

quasi-isotropiclaminate,which has a thickness,H, of0.044in.As indicatedinprevioustables,

theinitialfailurepointislocatedin thefirstlayerattheinnerradiallocationofthecylinderat

s/C=-0.I00.Consideringpointswhere theleft-handsideislessthan 1.00,thepointsaredispersed

circumferentiallyon bothsidesoftheinitialfailurepointbutremaininthefirstlayerattheinner

radiallocation.Eventuallythepointsreachtobothsidesoftheinterfacebetweenthefirstand sec-

ond layers,and theouterradiallocationoftheeighthlayer.An alternativeinterpretationof the

spatialdistributionof thepointsisthatmatrixcrackingwillaccumulatein layerI attheinner

radiallocation(_=-0.02220)intherange-0.16_<s/C_<0.Therewillalsobe crackinginlayersI

and 2 attheinterfacebetweentheselayers(_=-0.0165).Some crackingwillalsooccurinlayer8

attheouterlocation(_=0.0220).Allthesefailureswould be due tohighvaluesof u2.
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Figure 6-2. Points within 20% of failure pressure, Hashin criterion,

laminate, nonlinear analysis, x/L=O.5

quasi-isotropic
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Figure 6-2. Points within 20*/. of failure pressure, Hashin criterion, quasi-isotropic

laminate, nonlinear analysis, x/L=0.5

Figure 6-3 shows all points within 20% of the maximum leit-hand side value for the cir-

cumferentially-stiff laminate, which has a thickness, H, of 0.0495 in. As indicated in previous

tables, the initial failure points are located at the outer interface in the seventh layer, a 90 ° layer, at

s/C=i_0.25. Considering points where the leit-hand side is less than 1.00, the points are located at

the outer interface of the seventh layer and inward ofs/C--_.25. The points are also located at the

inner and outer interfaces of other layers, and inward of s/C---_.25. An alternative interpretation

of the spatial distribution of the points is that as pressure increases matrix cracking will accumu-

late in layer 7 at the outer interface location (_=0.01375) in the ranges -0.25 _<'s/C -<-0.22 and

0.22 -<s/C _<0.25. There will also be cracking in layer 6 at the interface between layers 6 and 7

(_=0.00825). Some cracking will also occur in layer 8 at the interface between layers 8 and 9

(_=0.01925), and at the outer radial location in layer 9 (_=0.02475). All these failures would be

due to high values of cr2.
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Figure 6-3. Points within 20% of failure pressure, Hashin criterion, circumferentially-stiff
laminate, nonlinear analysis, xfL=O.5

This chapter has presented a comprehensive discussion of failure of internally pressurized

elliptical cylinders. The Hashin and maximum stress failure criteria, geometrically linear and non-

linear analyses, and first matrix failure and first fiber failure were considered. Additionally, the

concept of an accumulation of matrix cracks was introduced. R was shown that for the first matrix

failure there was not much difference between the predictions of the two failure criteria or

between linear and nonlinear analyses. However, the predicted pressure to cause first fiber failure

was about a factor of two higher than the predicted pressure to cause matrix failure. Additionally,

considering nonlinear analysis, the Hashin prediction of first fiber failure for the circumferen-

tially-stiff laminate was quite different than the prediction of the maximum stress criterion. The

mode and location differed significantly, and the pressure levels were somewhat different. The

next chapter summarizes this entire study, presents conclusions, and provides ideas for future

work.
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Chapter 7 Conclusions and Future Work

This chapter summarizes this entire study, presents conclusions, and provides ideas for

future work.

7.1 Summary

Using numerical results, a thorough explanation was given of the effects of cylinder

geometry, specifically, circular vs. elliptical cross sections, and geometric nonlinearities on cylin-

der responses. Also, the effects of orthotropy were studied using quasi-isotropic, axially-stiff, and

circumferentially-stiff graphite-epoxy laminates. Displacements, reference surface strains and

curvatures, and force and moment resultants were used to define cylinder responses. The Hashin

failure theory and the maximum stress theory were used to assess the pressure capacity of ellipti-

cal composite cylinders. Interlaminar shear stresses were considered in the assessment of pressure

capacity by integrating the geometrically linear equilibrium equations of elasticity in polar coor-

dinates through the thickness at the cylinder wall. These intedaminar shear stresses together with

the inplane (intralaminar) stresses were used in the failure theories. Failure pressure levels, failure

location, and failure modes were studied.

7.2 Conclusions

The effects of elliptical geometry as discussed in chapter 2 include several key issues. For

instance, responses for the elliptical case vary with both the x and s coordinate. This variation is
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seen in every elliptical response, either over the entire domain, or at the boundary For the ellipti-

cal cylinder:

•axial responses are compressive at certain locations for axial displacement, axial strain,

and the axial force resultant, despite the axial tensile effect of the internal pressure on the

cylinder end plates

•the circumferential displacement and shear force resultant are not zero, whereas, both of

these responses are zero for the circular cylinder

•the normal displacement can be negative

•the shear strain is as large, or larger, than axial and circumferential strain, whereas, it is

zero for the circular cylinder

•the circumferential and twist curvatures are not zero at the midspan, whereas, both of

these responses are zero at the midspan for the circular cylinder

•an ellipticity of 0.7 causes a change in sign of the response at the boundary for axial cur-

vature, all moment resultants, and the shear force resultants as s varies from s/C = 0 to

sic = 0.25. It is felt less severe ellipses, e.g., an ellipticity of 0.90, may not experience

these sign reversals.

The differences between the geometrically linear and nonlinear analyses considered here

are strictly due to the nonlinear terms in the strain-displacement equations. Chapter 3 examines

the differences between linear and nonlinear analyses created by these nonlinear terms. The

effects of geometric nonlinearities seen in this chapter include several key issues. Between linear

and nonlinear analyses:

•a smaller axial end displacement, A, is required to satisfy axial equilibrium

•the axial displacement displays an overall difference in magnitude
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•the circumferential displacement has a shift of the location of the extreme value

• the normal displacement flattens at the crown of the cylinder.

Aside from the displacements, differences between linear and nonlinear analyses, if any exist,

seem to split into two categories: those due to flattening of the crown of the cylinder, and those;

involving a change in magnitude of the behavior at the boundary. Flattening of the crown of the

cylinder is seen in:

•the circumferential strain

• the circumferential curvature

• the circumferential force resultant.

The change of the behavior at the boundary is seen in:

• the axial curvature

•the axial and circumferential transverse shear force resultants, Qs and Qx.

The moment resultants show both behaviors, a flattening in the crown and a change of magnitude

at the boundary. Also, two definitions of the transverse force resultants, Vs and Vx, are introduced

for the nonlinear case. There are significant differences between the circumferential transverse

shear force resultant, Q--'s,and the circumferential transverse force resultant, V s.

In chapter 4 the focus is shifted from the influence of elliptical geometry and geometric

nonlinearities to the influence of material orthotropy. Each laminate has a different response to

internal pressure due to the percentages of fibers in the axial and circumferential directions. The

axially-stiff, circumferentially-sfiff, and quasi-isotropic laminates result in an overall difference in

magnitude for the axial, circumferential, and normal displacements. In fact, the axially-stiff ellip-

tical cylinder evaluated using nonlinear analysis contracts axially in response to internal pressure,
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whereas, for the other two cases there is axial extension. For some responses orthotropy mitigates

the effect of ellipticity. For example:

•the circumferential strain behaves like that of a circular cylinder in the midspan region of

the circumferentially-stiff laminate, namely being independent of circumferential loca-

tion

•for the axially-stifflaminate, the axial strain displays less spatial variation with both x and

s compared to the axial strains for the circumferentiaily-stiff and quasi-isotropic lami-

nates.

The variation with s at the clamped boundary depends significantly on orthotropy for:

•the axial curvature

•the circumferential force resultant

•the circumferential moment resultant

•the transverse force resultants.

Compared to the circumferentially-stiff and quasi-isotropic laminates, for these responses, the

axially-stiff laminate does not generally exhibit as much variation with s.

In chapter 5, an evaluation of material failure using the maximum stress and Hashin fail-

ure criteria is presented for elliptical cylinders by considering geometrically linear and nonlinear

analyses and quasi-isotropic, axiaily-stiff, and circumferentially-stiff laminates. Also, the

approach is discussed for computing the inplane stresses, and a method is presented for comput-

ing the interlaminar shear stresses that contribute to the failure criteria. The integral of the inter-

laminar shear stresses through the thickness are compared to the transverse shear stress resultant

to verify the derivation of the interlaminar shear stresses. The difference between the integrated

interlaminar shear stresses and the transverse shear stress resultant is considered to be negligible.
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In chapter 6, the Hashin and maximum stress failure criteria and geometrically linear and

nonlinear analyses are considered in order to predict the location of failure, mode of failure, and

the pressure at failure. First matrix failure and first fiber failure are considered. Additionally, the

concept of an accumulation of matrix cracks is introduced. Catastrophic failure is not expected at

initial failure due to matrix cracking. Catastrophic failure due to fiber failure is more likely. For

the geometrically linear analysis:

•the Hashin and maximum stress criteria both predict failure due to matrix cracks due to

high values of cr2 at very similar, if not identical, pressure levels and locations

•first fiber failure is predicted to be fiber compression for all cases at identical locations

for the Hashin and maximum stress criteria

•pressures for first fiber failure are about twice as high as for matrix cracking pressures

•the contributions of the intedaminar shear stresses to failure were small.

For the geometrically nonlinear analysis:

'the Hashin and maximum stress criteria both predict failure due to matrix cracks due to

high values of _2 at very similar, if not identical, pressure levels and locations

• slightly higher failure pressures at locations somewhat farther from the crown are pre-

dicted for the quasi-isotropic and axially-stiff laminates compared to the geometrically

linear case

•slightly lower failure pressures but identical locations are predicted for the circumferen-

tiaUy-stiff laminate compared to the geometrically linear case

•first fiber failure for the Hashin criterion is predicted to be fiber compression for the axi-

ally-stiff and quasi-isotropic laminates at pressures higher than first fiber failure for the

geometrically linear case
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•first fiber failure for the Hashin criterion is predicted to be fiber tension for the circumfer-

entially-stiff laminate at a higher pressure and different location than first fiber failure

for the geometrically linear case

•first fiber failure for the maximum stress criterion is predicted to be fiber compression for

all cases at higher pressures at locations farther away from s/C = 0 than first fiber failure

predicted using a geometrically linear analyses.

For all cases, axially-stiffand quasi-isotropic laminates are predicted to fail due to bending effects

and the circumferentially-stiff laminate is predicted to fail due to inplane effects. The differences

in the predictions of the two failure criteria as expressed in the last three buUeted points is consid-

ered significant.

7.3 Future Work

7.5.1 Numerical

Future work will focus on a progressive failure analysis. This will mean moving beyond

the first ply failure analysis and reaching the point of having a significant number of fibers fail.

Since the initial failure will take place at certain circumferential, i.e., s/C, locations and not others,

degraded material properties are to be incorporated only in the affected locations. This will make

the analysis much more difficult than if material properties of the cylinder are the same at all loca-

tions. Therefore the finite element program STAGS will be used to study the progressive failure

analysis. This will involve doing a sequence of analyses, each with a different distribution of

material properties, the distributions reflecting the progressive degradation of material properties

as the pressure increases.
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7.3.2 Experimental

For the experimental phase of the work, existing elliptical cylinders will be prepared for

pressure testing in the Structural Mechanics Branch of the NASA-Langley Research Center. This

will involve C-scanning the cylinders for any material imperfections, then scanning the geometry

to determine the exact shape of the cylinders. End fittings will have to be attached and strain

gages mounted. The end fittings will be ones specially-designed for pressure testing. Testing to

bursting failure will then take place.
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Appendix A Comparison between Present and STAGS Results

In this appendix the displacement, strain, and stress resultant responses are shown for

eight and nine layer graphite-epoxy cylinders with semi-major diameters of 5 in., ellipticities of

0.7, and lengths of 12.5 in. These responses are computed with the semi-analytical solution of the

present study and with the finite element code STAGS [A-I]. Only geometrically nonlinear analy-

ses are considered. The material and geometric properties of a layer of graphite-epoxy are taken to

be

E l = 18.85 Msi E 2 = 1.407 Msi
(A.l)

GI2 = 0.725 Msi el2 = 0.300 h = 0.0055 in.

where h is the thickness of a single layer. The laminates considered are: quasi-isotropic,

[±45/0/90]s; axially-stiff, [=1=45/02/90_s; circumferentially-stiff, [+45/902/0_s , where 0 degrees

is in the axial direction.

The mesh for the semi-analytical solution has 125 finite-difference nodes in the axial

direction and 100 nodes around the circumference for a total of 12,500 nodes. In the axial direc-

tion the distance between nodes is adjusted by the finite-difference scheme according to the mag-

nitude of the axial gradients in the response quantifies. In the circumferential direction the

distance between nodes is 0.2718 in. The STAGS mesh has 41 nodes in the axial direction and 97

nodes around the circumference, for a total of 3997 nodes and 3840 elements. The nodes are equi-

spaced in both directions and the length of the element is 0.3125 in. in the axial direction and

0.2803 in. in the circumferential direction. Essentially, the mesh is finer in the present solution
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thanfor the STAGS solution. The difference in the mesh between the present and STAGS solution

is most significant in the axial direction, as is apparent in figs. A-1 - A-18.

For the STAGS solution the displacements are computed at the nodes. The strains, curva-

tures, force resultants, moment resultants, and shear force resultants are computed at the Gauss

points, which are located at the center of the element. Therefore, for the STAGS solutions there

are no results for the ends of the cylinder, which is where failure is predicted to occur. By increas-

ing the number of points in the axial direction, the Gauss points can approach the ends of the cyl-

inder, but they can never reach the ends. For this reason, a failure prediction using STAGS results

will not agree with a failure prediction using the present analysis. For a given failure criterion,

STAGS will be nonconservative.
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Present Solution STAGS

Figure A-11 Comparison between present solution and STAGS for an axially-stiff

elliptical cylinder, e--0.7, po=100 psi: force resultants
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Figure A-16 Comparison between present solution and STAGS for an circumferentially-stiff

elliptical cylinder, e--0.7, po=100 psi: moment resultants
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STAGS

Figure A-17 Comparison between present solution and STAGS for an circumferentiaUy-stiff
elliptical cylinder, e=0.7, po=100 psi: force resultants
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Appendix B Axial Displacement Required for each Pressure

Due to the assumed rigid end plates, clamped-clamped boundary conditions are applied to

each end of the cylinder, with the exception of allowing the end at x = +/./2 end to expand uni-

formly in the axial direction with displacement A. The end at x = -/./2 cannot move axially in

order to restrict axial rigid body translation. Formally, the boundary conditions at the ends of the

cylinder (x = __/2) are as follows:

_ L
i) u° = O@x - --,

2

ii) v ° = 0

iii) w ° = 0

°34'° - 0.
iv) a_

u° = ,t @ x = +L_
2

03.1)

The end displacement ,5 is determined by enforcing axial equilibrium of the end enclosure at x =

_ Nxds = PoXab,

+/1'2, namely,

03.2)

where N x is the axial force resultant within the cylinder, C is the circumference of the cylinder ref-

erence surface, and the cross-sectional area of the ellipse is nab. Physically, ¢q. B.2 states that the

net axial force due to the internal pressure times the cross-sectional area of the end enclosure must

be balanced by the net axial force due to the axial force resultant.

Tables B-1 and B-2 show the end displacements d used for various internal pressure val-

ues for the quasi-isotropic, axially-stiff, and eircumferentially-stiff laminates evaluated using lin-
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ear and nonlinear analyses, respectively. Since table B-1 shows the end displacements for each

laminate evaluated using linear analysis, only one internal pressure value is needed. The end dis-

placement can be determined for any other internal pressure by linearly extrapolating. The cir-

cumferentially-stiff laminate requires the largest end displacement `4 to satisfy axial equilibrium,

whereas the axially-stiff laminate requires the smallest end displacement ,4. This can be

explained by considering the percentage of fibers along the axial direction. The circumferen-

tially-stifflaminate has fewer fibers in the axial direction than the quasi-isotropic and axially-stiff

laminates. Therefore, the circumferentially-stiff laminate provides less resistance to expansion in

the axial direction.

Table B-1. End displacement required to satisfy axial equilibrium corresponding to an

internal pressure evaluated using linear analysis

Pressure

(psi)

Quasi-isotropic

100

0.002391

Axially-stiff

100

0.000326

Circumferentially-stiff

100

0.005627

For the nonlinear analyses, the end displacements cannot be obtained through linear

extrapolation, as seen in table B-2. In the nonlinear case, linearly extrapolating overestimates the

end displacement ,4 necessary to satisfy axial equilibrium. Therefore, for each pressure used the

end displacement `4 must be determined. Again, the circumferentially-stiff laminate requires the

largest end displacement `4 to satisfy axial equilibrium.
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Table B-2. End displacement required to satisfy axial equilibrium corresponding to an

internal pressure evaluated using nonlinear analysis

_es$_e

(psi)

Quasi-isotropic

loo

Axially-stiff

100

Circumferentially-stiff

loo

A 0.002039 -0.000061 0.005349

(in.)

Pressure 130 130 240

(psi)

0.002536 0.000208 0.012180A

(in.)

250

0.004137

Pressure

(psi)
250

0.001240

In general, the end displacement A required for the nonlinear case is smaller than for the

linear case. The most significant difference is seen with the axially-stiff laminate for 100 psi. The

axially-stifflaminate evaluated using linear analysis extends 0.000326 in. but contracts -0.000061

in. when evaluated using nonlinear analysis. Recalling the definition of axial reference surface

strain,

_x -- _ + (8.3)2_, ¢_: ,/ ,

the difference in the axial displacements between the linear and nonlinear case exist in the under-

lined term. With the addition of the underlined term for the nonlinear case, the end displacement

is more sensitive to outward or inward wall deflection caused by the internal pressure.
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Manufacturing Distortions of Curved

Composite Panels

T. T. OCHINERO and M. W. HYER

ABSTRACT

This paper briefly discusses the influences of through-thickness thermal expansion,

a misaligned ply, and a resin-rich slightly thicker ply on the deformations of a
curved composite laminate during cool down from the cure temperature. Both two-
dimensional and three-dimensional level finite-element analyses are used. The

deformations ate categorized as to radial and tangential deformations and twist, and

for each of the three influences these deformations are quantified. An additional

outcome of the study is an indication of the level of analysis needed to study each
of these three influences.

INTRODUCTION

When manufacturing flat and curved composite panels, the intention is to produce

panels with specific geometric properties, i.e., length, width, radius of curvature,
etc. Often, upon completion of the various stages of the manufacturing, and after

the panel has cooled to room temperature and has been removed from the tool, hot

press, or autoclave, the dimensions of the panel axe not as intended. Focusing on
curved panels, the lack of the proper radius of curvature and the presence of twist

in the panel ate among some of the problems. This lack of dimensional fidelity can

be thought of, and ate often spoken of, as a manufacturing distortion or watpage.
Distortion can be a serious problem because it means that panels must be forced to

fit onto existing frames or stiffeners arrangements, or forced to fit with other panels
to make up a complete structure. This forcing to achieve a fit can lead to unwanted

stresses that lead to fatigue or other stress-related problems and, in the case of

production-level quantities, a lack of quality control.

T. Thomas Ochine¢oand M. W. Hyer
Departmentof EngineeringScienceand Mechanics
VirginiaPolytechnicInstituteand State University,Blacksburg,VA 24061.



The goals of this paper are to: (1) categorize the types of distortions that can occur;

(2) illustrate that there are inherent, or natural, deformations that occur due to the

thermal expansion behavior of composite materials and a curved geometry, and
occur in so-called perfect panels; (3) quantify the levels of distortions predicted as

a function of the level of refinement of the analysis tool. The paper will lead the

reader through the mechanisms and considerations that account for some of the

manufacturing distortions of curved composite panels. A very specific problem will

be considered, namely, a four-layer graphite-opoxy panel with a 150 in. radius of

curvature, a 60° opening angle, and a 150 in. length. The 150 in. radius and 600

opening angle lead to an arc length of approximately 150 in. The specific lay-up is

nominally [i_']s, with 0 varying from 00 to 90 °. The radius to thickness ratio R/H

is 600. The angle 0 is measured relative to the axial direction, values of 0 between

0° and 30 ° corresponding to axially stiff panels and values between 60 ° and 90 °

corresponding to circumferentially stiff panels. ManufacUn'ing distortions are
predicted using two-dimensional and three-dimensional ABAQUS models of the

panel, the latter to capture the influences of through-thickness effects, assuming

there are any. The two-dimensional ABAQUS models were constructed of 392
$8R5 8-noded shell elements. The three-dimensional ABAQUS models were

constructed of 1568 C3D20 20-noded solid brick elements.

It is assumed the manufacturing process can be divided into three stages. Stage one

is the room-temperature lay-up stage. In this stage the prepreg material is applied to

a tool, either by hand or by an automated process. At this stage there can be

variations in ply thickness, both within a ply and from ply to ply; there can be ply
waviness, i.e., the fibers are not straight within a layer, rather they form either long

or short wavelength 'S' patterns; there may be gaps in the prepreg; uneven resin
distribution; and broken fibers. In addition, a given ply alignment may be slightly

different than the intended alignment. All of these effects, particularly the latter,

can lead to unwanted changes in the geometry of the panel. Stage two consists of

consolidation and curing of the laminate at elevated temperatures and pressures.

During this time a number of influences are possible. Temperature gradients along

the length or circumference can lead to different curing conditions in different

regions of the panel. These different curing conditions can result in spatially
nonuniform mechanical and thermal expansion properties. As resin bleed, and

therefore ply thickness and fiber volume fraction, depend on compaction pressure,

variations in pressure from location to location can lead to spatially nonuniform ply

properties, both in the lengthwise and circumferential directions, and also in the
thickness direction. It is also possible that during this second stage ply shifts cause

fiber misalignments. If a panel is consolidated and cured in multiple steps, such as

with a sandwich panel, for example, other problems can occur during this stage.
The third stage in the process is cooling and removal from the tool. Though most of
the factors which cause distortions have occurred before this stage, it is during this

third stage that the factors become evident. There can be actual failures of the



material during cooling, and closed sections can become bound on the tools,
thereby requiring force to remove them.

Of all these influences, three will be considered here. The first will be that of the

inherent difference in through-thickness thermal expansion of composite material

relative to the inplane thermal expansion. This effect is responsible for spring-in
and spring-out. The second influence will be that of ply misalignment, and the third

will be that of a slightly thicker ply. The first influence cannot be avoided; the
second and third ones can.

For purposes of discussion, it is convenient to define warpage metrics that will be

used to describe and compare the deformation of the panel. Figure 1 shows the

three primary warpage metrics that will be repeatedly utilized throughout the rest of

this paper. For consistency, the displacement data presented here will be of a corner

of the panel. Radial gap, AR, is defined as the radial displacement of the corner
node, measured in inches. A positive radial gap corresponds to a spring-out of the

panel. Tangential gap, AT, is defined as the circumferential displacement of the
corner node, measured in inches. A positive gap corresponds to an increase in panel

arc length. Finally, twist, $, measured in degrees, is the angle that the two

originally parallel sides make after the thermal load is applied.

BASELINE

It is useful to consider the radial and tangential gaps and the twist of a [_°]s

laminate due to a -300 ° F temperature change, representing cool-down from curing,

as predicted by classic two-dimensional analysis employing the plane-stress and
Kirchhoff assumptions. This would perhaps be the analysis level initially used to
study manufacturing distortions. As a baseline, consider that all plys are oriented as

intende_ and all ply thicknesses are uniform and identical, i.e., the curved panel is

perfect. In Fig. 2 the solid line with the circles shows the relationship between

radial gap and 0. The horizontal axis in Fig. 2 is the angle 0 as it is varied from 0 °

to 90 °. The vertical axis is the radial gap. As can be seen, for small values of 0, the

panel is predicted to exhibit slight spring-in (approx. 0.1 in.), while for 0 greater
than 48 °, minimal spring-out is predicted. Focusing on the solid line with circles in

Fig. 3, the tangential gap varies from a circumferential contraction of-0.3 in. at 0 =

0 ° to no gap at 0 = 48 ° and finally to a small expansion for 0 greater than 48 °. For

this perfect baseline case and the two-dimensional analysis, for all 0, the tangential

gap and the accompanying radial gap are due simply to the circumferential

coefficient of thermal expansion of the [:L-0°]s laminate which can be computed

quite readily from classical lamination theory [1]. For the baseline case, as shown

in Fig. 4, it is predicted that no twist develops for any value of 0.
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EFFECT OF THROUGH-THICKNESS THERMAL EXPANSION

With fiber-reinforced composite materials, the through-thickness thermal

expansion coefficient is considerably larger than the thermal expansion coefficient
in the fiber direction. As a result, a curved laminated panel can have a

circumferential coefficient of thermal expansion that is smaller than coefficient in
the thickness direction. When the temperature is changed, this can result in

thermally-induced circumferential stresses that lead to a net thermally-induced

circumferential moment which is directly responsible for spring-in or spring-out,

depending on the sign of the moment [2,3]. To account for the effect of the
differences between circumferential and through-thickness thermal expansion

coefficients, something other than a classic two-dimensional analysis must be used.

Here a fully three*dimensional finite-element model was used. Note that two-

dimensional models do not require information regarding the through-thickness
thermal expansion coefficient, or any other out-of-plane property for that matter. In

addition, with two-dimensional analyses three of the six stress components are

equated to zero, and the displacements are assumed to vary in specific manners as a

function of the laminate thickness coordinate. None of these restrictions are present

in a three-dimensional model. In Fig. 2, the dashed line with circles illustrates the

predicted radial gap of the perfect panel as a function 0 using a three*dimensional

analysis. Note that at small values of 0, a condition that results in similar values for

the through-thickness and circumferential thermal expansion coefficients, there is

not much difference between the spring-in predictions of the two-dimensional

model and the predictions of the three-dimensional model. However, for increasing

0, a condition which leads to larger values of the through-thickness thermal

expansion coefficient than circumferential thermal expansion coefficients, the

predictions of the two analyses diverge. For 0 greater than 48 °, the two-

dimensional analysis predicts spring-out and the three*dimensional analysis

predicts spring-in. (That the spring-in prediction of the three-dimensional analysis

appears to be independent of 0 is the result of certain effects dominating for one

range of 0 and other effects dominating for other ranges of 0. This is opposed to

one effect being present in the three*dimensional analysis that is absent in the two-

dimensional analysis and dominating for the entire range of 0.) The tangential gap,
in Fig. 3, is not significantly influenced by three*dimensional effects, as evidenced

by the closeness of the solid and dashed lines with circles for all O. Interestingly,

the three*dimensional model predicts a slight twisting, even for perfect laminates.



EFFECTSOFPLY MISALIGNMENT

As mentioned,amisaligned ply can occur during the manufacturing of a composite

panel. Opinions vary, but common tolerances for this process are believed to be
around :_-3-5°. Here, two-dimensional and three-dimensional finite element analyses

were conducted assuming a 1° ply misalignment on the inner layer, assuming all

other layers have been oriented perfectly. Hence the lamination arrangement

considered was [0+l/-0/-0/0]T. Figure 2 illustrates the influence of this

misalignment on the radial gap. The solid line with the triangles shows the results

from the two-dimensional analysis and the dashed line with the triangles shows the
results of the three-dimensional analysis. It can immediately be noted that the

magnitudes of displacement associated with the ply misalignment tend to

overshadow any of the small displacements associated with the perfect cases, either
with or without through-thickness thermal expansion effects. Both two-dimensional

and three-dimensional analyses predicts a maximum radial gap to occur when 0 is

about 30 ° and the gap is on the order of 1 in. For 0 greater than 60 °, the influence of

the misaligned ply is not as strong. It should be noted that a positive radial gap due

to a misaligned ply does not necessarily signify spring-out for this case.

Accompanying this radial gap is twist, which results in negative displacements at
other comers of the curved panel. It can be seen in the figure that a two-

dimensional analysis fairly well represents the radial gap effects. At 0 = 90 ° there is

disagreement because of the through-thickness thermal expansion effect. The

tangential gap, shown in Fig. 3, is also influenced by ply misalignment. In relation

to the tangential gap for the perfect case, at 0 ffi30° there is about 0.2 inch more

tangential gap, or about twice as much as the perfect case. It should be emphasized

that overcoming an unwanted tangential gap in a curved panel is much more

difficult than overcoming an unwanted radial gap. To overcome an unwanted

tangential gap, the laminate must be stretched or compressed in the circumferential
direction, essentially overcoming inplane stiffness A22. (For compression, buckling

could be an issue.) To overcome a radial gap requires bending the laminate in the

circumferential direction. This is resisted by the bending stiffness D22. Bending a

thin laminate requires less force than stretching it. Finally, Fig. 4 illustrates the

twist that results from a misaligned inner ply. The misalignment effect is most

extreme for 0 = 0° and 90° and crosses zero at 0 just less than 45 °. The predictions

of the two-dimensional analysis are very close to the predictions of the three-

dimensional model, indicating that a two-dimensional model is quite sufficient to

reflect twisting effects, as was the case for both radial and tangential gaps. For all
three measures of distortion, the effect of a misaligned ply tend to be much more

severe than the effects of through-thickness thermal expansion.



EFFECT OF PLY THICKNESS VARIATION

During the curing of the laminate, the resin liquefies and flows out of the laminate
to be absorbed by the bleeder material covering the outside surface of the laminate.

One of the results of this bleeding process can be a geometrically unsymmetric
laminate due to variations in ply thickness from one ply to the next. Specifically, if

the curved panel is fabricated on a tool, then it is possible the plys nearest the tool

do not bleed as much as the plys away from the tool and in contact with the bleeder

material. Here it is assumed the inner ply is 1% thicker than the other three. It is
further assumed that the increased thickness is due to excess resin, so the material

properties of the thicker ply are slightly different than the other plys. Once again,
two-dimensional and three-dimensional finite element analyses were used to

compare results. Figure 2 shows the variation in radial gap vs. 0 due to the inner

ply being 1% thicker due to excess resin. The solid and dashed lines with X's
represent the variations based on two-dimensional and three-dimensional analyses,

respectively. It is seen that for all 0 the radial gap is negative, the largest radial gap

occurring at 0 = 30 °. Compared to the misaligned ply case, the thicker ply doesn't

produce as large a maximum deviation of radial gap relative to the baseline case.

For 0 greater than 60 ° the influences of the thicker ply are not as great as for

smaller values of 0. The tangential gap, shown in Fig. 3, is different enough

relative to the baseline case that it could cause misfit problems. Averaged over 0,

the thicker ply causes about the same deviation of the radial and tangential gaps

relative to the baseline case as the misaligned ply. In contrast, the twist due to the

thicker ply, shown in Fig. 4, is nowhere as severe as the twist due to a misaligned

ply, though the twist is much more than the baseline case. Overall, for the radial
and tangential gaps and the twist, the two-dimensional model and the three-

dimensional model agree reasonably well.

CONCLUSIONS

From the study it can be concluded that for the situation considered here, the

misaligned ply causes the most severe distortion of a curved panel. Obviously this

is based on using a 1° misalignment and a 1% thicker ply, somewhat arbitrary

numbers. Of less importance is the influence of the through-thickness thermal

expansion. It should be noted, however, that as laminate thickness increases, for a
fixed radius, the through-thickness thermal expansion effect becomes more

pronounced. Furthermore, it appears that a two-dimensional model adequately
represents the effects of a misaligned ply and a thick ply, but a three-dimensional

model is needed to evaluate through-thickness thermal expansion effects.
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Figure 2 - Radial Gap due to Cool-Down from Curing
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Figure 3 - Tangential Gap due to Cool-Down from Curing

--.-- 3D perfect

I-'-2D m.isalisned ply

I-"-2D thick ply

0 15 30 45 60 75
ply orientation angI (degrees)

9O

Figure 4 - Twist due to Cool-Down from Curing


